无数据
Received:01 November 2024,
Revised:17 February 2025,
Accepted:20 February 2025,
Published Online:20 May 2025,
Published:2025-12
Scan QR Code
Wenting Wang, Hao Liu, Jiagui Wu, et al. Free-space terabit/s coherent optical links via platicon frequency microcombs[J]. Elight, 2025, 5.
Wenting Wang, Hao Liu, Jiagui Wu, et al. Free-space terabit/s coherent optical links via platicon frequency microcombs[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00082-0.
Coherent frequency microcombs
generated in nonlinear high-Q microresonators and driven by a single continuous-wave laser
have enabled several scientific breakthroughs in the past decade
thanks to their high intrinsic phase coherence and individual comb line powers. Here
we report terabit-per-second-scale coherent data communications over a free-space atmospheric link
using a platicon frequency microcomb
employing wavelength- and polarization-division multiplexing for next-generation optical wireless networks. Spanning more than 55 optical carriers with 115 GHz channel spacing
we report the first free-space coherent communication link using a frequency microcomb
achieving up to 8.21 Tbit/s aggregate data transmission at a 20 Gbaud symbol rate per carrier over 160 m
even under log-normal turbulent conditions. Utilizing 16-state quadrature amplitude modulation
we demonstrate retrieved constellation maps across the broad microcomb spectrum
achieving bit-error rates below both hard- and soft-decision thresholds for forward-error correction. Next
we examine a wavelength-division multiplexing free-space passive optical network as a baseline for free-space fronthaul
achieving an aggregate data rate of up to 5.21 Tbit/s and a field-tested spectral efficiency of 1.29 bit/s/Hz in the microcomb-based atmospheric link. We also quantify experimental power penalties of ≈ 3.8 dB at the error-correction threshold
relative to the theoretical additive white Gaussian noise limit. Furthermore
we introduce the first-ever demonstration of master–slave free-space carrier phase retrieval with frequency microcombs
and the compensation for turbulence-induced intensity scintillation and pointing error fluctuations
to improve end-to-end symbol error rates. This work provides a foundational platform for broadband vertical heterogeneous connectivity
terrestrial backbone links
and ground-satellite communication.
Y. Liu , Z.R. Qiu , X.R. Ji , A. Bancora , G. Lihachev , J. Riemensberger , R.N. Wang , Q. Voloshin , T.J. Kippenberg , A fully hybrid integrated erbium-based laser . Nat. Photon 18 , 829 - 835 ( 2024 ). http://doi.org/10.1038/s41566-024-01454-7 http://doi.org/10.1038/s41566-024-01454-7
Y. Liu , Z.R. Qiu , X.R. Ji , A. Lukashchuk , J.J. He , J. Riemensberger , M. Hafermann , R.N. Wang , J.Q. Liu , C. Ronning , T.J. Kippenberg , A photonic integrated circuit–based erbium-doped amplifier . Science 376 , 1309 - 1313 ( 2022 ). http://doi.org/10.1126/science.abo2631 http://doi.org/10.1126/science.abo2631
P. Del’Haye , A. Schliesser , O. Arcizet , T. Wilken , R. Holzwarth , T.J. Kippen berg , Optical frequency comb generation from a monolithic microresonator . Nature 450 , 1214 - 1217 ( 2007 ). http://doi.org/10.1038/nature06401 http://doi.org/10.1038/nature06401
C. Xiang , J.Q. Liu , J. Guo , L. Chang , R.N. Wang , W.L. Weng , J. Peters , W.Q. Xie , Z.Y. Zhang , J. Riemensberger , J. Selvidge , T.J. Kippenberg , J.E. Bowers , Laser soliton microcombs heterogeneously integrated on silicon . Science 373 , 99 - 103 ( 2021 ). http://doi.org/10.1126/science.abh2076 http://doi.org/10.1126/science.abh2076
S.A. Diddams , K. Vahala , T. Udem , Optical frequency combs: coherently uniting the electromagnetic spectrum . Science 369 , 267 - 414 ( 2020 ). http://doi.org/10.1126/science.aay3676 http://doi.org/10.1126/science.aay3676
Y. Shi , X. Li , G.Y. Chen , M.J. Zou , H.J. Cai , Y. Yu , X.L. Zhang , Avalanche photodiode with ultrahigh gain bandwidth product of 1033 GHz . Nat. Photon 18 , 610 - 616 ( 2024 ). http://doi.org/10.1038/s41566-024-01421-2 http://doi.org/10.1038/s41566-024-01421-2
C.L. Wang , Z.H. Li , J. Riemensberger , G. Lihachev , M. Churaev , W. Kao , X.R. Ji , J.Y. Zhang , T. Blesin , A. Davydova , K. Huang , X. Wang , X. Ou , T.J. Kippenberg , Lithium tantalate photonic integrated circuits for volume manufacturing . Nature 629 , 784 - 790 ( 2024 ). http://doi.org/10.1038/s41586-024-07369-1 http://doi.org/10.1038/s41586-024-07369-1
C. Wang , M. Zhang , X. Chen , M. Bertrand , A. Shams-Ansari , S. Chandrasekhar , P. Winzer , M. Lončar , Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages . Nature 562 , 101 - 104 ( 2018 ). http://doi.org/10.1038/s41586-018-0551-y http://doi.org/10.1038/s41586-018-0551-y
A. Rizzo , A. Novick , V. Gopal , B.Y. Kim , X.C. Ji , S. Daudlin , Y. Okawachi , Q.X. Cheng , M. Lipson , A.L. Gaeta , K. Bergman , Massively scalable Kerr comb-driven silicon photonic link . Nat. Photon. 17 , 781 - 790 ( 2023 ). http://doi.org/10.1038/s41566-023-01244-7 http://doi.org/10.1038/s41566-023-01244-7
C.B. Zhang , Y.X. Zhu , B.B. He , J.J. Lin , R.W. Liu , Y.C. Xu , L.L. Yi , Q.B. Zhuge , W.W. Hu , W.S. Hu , Z.Y. Chen , X.P. Xie , Clone-comb-enabled high-capacity digital-analogue fronthaul with high-order modulation formats . Nat. Photon. 17 , 1000 - 1008 ( 2023 ). http://doi.org/10.1038/s41566-023-01273-2 http://doi.org/10.1038/s41566-023-01273-2
M.Z. Chowdhury , M. Shahjalal , S. Ahmed , Y.M. Jang , 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions . IEEE Open J. Commun. Soc. 1 , 957 - 975 ( 2020 ). http://doi.org/10.1109/OJCOMS.2020.3010270 http://doi.org/10.1109/OJCOMS.2020.3010270
I.F. Akyildiz , A. Kak , S. Nie , 6G and beyond: the future of wireless communications systems . IEEE access 8 , 133995 - 134030 ( 2020 ). http://doi.org/10.1109/ACCESS.2020.3010896 http://doi.org/10.1109/ACCESS.2020.3010896
K. Liu , Y. Feng , C. Han , B. Chang , Z. Chen , Z. Xu , L. Li , B. Zhang , Y. Wang , Q. Xu , High-speed 0.22 THz communication system with 84 Gbps for real-time uncompressed 8K video transmission of live events . Nat. Commun. 15 , 8037 ( 2024 ). http://doi.org/10.1038/s41467-024-52370-x http://doi.org/10.1038/s41467-024-52370-x
T. Nagatsuma , G. Ducournau , C.C. Renaud , Advances in terahertz communications accelerated by photonics . Nat. Photon. 10 , 371 - 379 ( 2016 ). http://doi.org/10.1038/nphoton.2016.65 http://doi.org/10.1038/nphoton.2016.65
S. Koenig , D. Lopez-Diaz , J. Antes , F. Boes , R. Henneberger , A. Leuther , A. Tessmann , R. Schmogrow , D. Hillerkuss , R. Palmer , T. Zwick , C. Koos , W. Freude , O. Ambacher , J. Leuthold , I. Kallfass , Wireless sub-THz communication system with high data rate . Nat. Photon. 7 , 977 - 981 ( 2013 ). http://doi.org/10.1038/nphoton.2013.275 http://doi.org/10.1038/nphoton.2013.275
Y. Salamin , B. Baeuerle , W. Heni , F.C. Abrecht , A. Josten , Y. Fedoryshyn , C. Haffner , R. Bonjour , T. Watanabe , M. Burla , D.L. Elder , L.R. Dalton , J. Leuthold , Microwave plasmonic mixer in a transparent fibre–wireless link . Nat. Photon. 12 , 749 - 753 ( 2018 ). http://doi.org/10.1038/s41566-018-0281-6 http://doi.org/10.1038/s41566-018-0281-6
H. Kaushal , G. Kaddoum , Optical communication in space: challenges and mitigation techniques . IEEE Commun. Surv. Tutor. 19 , 57 - 96 ( 2016 ). http://doi.org/10.1109/COMST.2016.2603518 http://doi.org/10.1109/COMST.2016.2603518
Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F.H. Xu, X.-B. Wang, C.-Z. Peng, J.-W. Pan, An integrated space-to-ground quantum communication network over 4600 kilometres. Nature (2021)
H.J. Kang , J.W. Yang , B.J. Chun , H. Jang , B.S. Kim , Y.J. Kim , S.W. Kim , Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link . Nat. Commun. 10 , 4438 ( 2019 ). http://doi.org/10.1038/s41467-019-12443-8 http://doi.org/10.1038/s41467-019-12443-8
J.W. Yang , D.I. Lee , D.C. Shin , J.H. Lee , B.S. Kim , H.J. Kang , Y.J. Kim , S.W. Kim , Frequency comb-to-comb stabilization over a 1.3-km free-space atmospheric optical link . Light Sci. Appl. 11 , 253 ( 2022 ). http://doi.org/10.1038/s41377-022-00940-3 http://doi.org/10.1038/s41377-022-00940-3
M.P.J. Lavery , M.M. Abadi , R. Bauer , G. Brambilla , L. Cheng , M.A. Cox , A. Dudley , A.D. Ellis , N.K. Fontaine , A.E. Kelly , C. Marquardt , S. Matlhane , B. Ndagano , F. Petruccione , R. Slavík , F. Romanato , C. Rosales-Guzmán , F.S. Roux , K. Roux , J. Wang , A. Forbes , Tackling Africa’s digital divide . Nat. Photon. 12 , 249 - 252 ( 2018 ). http://doi.org/10.1038/s41566-018-0162-z http://doi.org/10.1038/s41566-018-0162-z
A. Dochhan, J. Poliak, J. Surof, M. Richerzhagen, H. F. Kelemu, and R. M. Calvo, 13.16 Tbit/s free-space optical transmission over 10.45 km for geostationary satellite feeder-links. Photonic Networks , 20th ITG-Symposium (2019).
E. Ciaramella , Y. Arimoto , G. Contestabile , M. Presi , A. D’Errico , V. Guarino , M. Matsumoto , 1.28 Terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications . IEEE J. Sel. Areas Commun. 27 , 1639 - 1645 ( 2009 ). http://doi.org/10.1109/JSAC.2009.091213 http://doi.org/10.1109/JSAC.2009.091213
J. Wang , J.-Y. Yang , I.M. Fazal , N. Ahmed , Y. Yan , H. Huang , Y.X. Ren , Y. Yue , S. Dolinar , M. Tur , A.E. Willner , Terabit free-space data transmission employing orbital angular momentum multiplexing . Nat. Photon. 6 , 488 - 496 ( 2012 ). http://doi.org/10.1038/nphoton.2012.138 http://doi.org/10.1038/nphoton.2012.138
T. Harter , C. Füllner , J.N. Kemal , S. Ummethala , J.L. Steinmann , M. Brosi , J.L. Hesler , E. Bründermann , A.-S. Müller , W. Freude , S. Randel , C. Koos , Generalized Kramers-Kronig receiver for coherent terahertz communications . Nat. Photon. 14 , 601 - 606 ( 2020 ). http://doi.org/10.1038/s41566-020-0675-0 http://doi.org/10.1038/s41566-020-0675-0
N.B. Zhao , X.Y. Li , G.F. Li , J.M. Kahn , Capacity limits of spatially multiplexed free-space communication . Nat. Photon. 9 , 822 - 826 ( 2015 ). http://doi.org/10.1038/nphoton.2015.214 http://doi.org/10.1038/nphoton.2015.214
A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, Micro-combs: A novel generation of optical sources. Phys. Rep , 729, 1–81 (2018).
B. C. Yao W. T. Wang, Z. D. Xie, Q. Zhou, T. Tan, H. Zhou, G. C. Guo, S. N. Zhu, N. H. Zhu, and C. W. Wong, Interdisciplinary advances in microcombs: bridging physics and information technology. eLight 4, 19 (2024).
T. Herr , V. Brasch , J.D. Jost , C.Y. Wang , N.M. Kondratiev , M.L. Gorodetsky , T.J. Kippenberg , Temporal solitons in optical microresonators . Nat. Photon. 8 , 145 - 152 ( 2013 ). http://doi.org/10.1038/nphoton.2013.343 http://doi.org/10.1038/nphoton.2013.343
X.X. Xue , P.-H. Wang , Y. Xuan , M.H. Qi , A.M. Weiner , Microresonator Kerr frequency combs with high conversion efficiency . Laser Photon. Rev. 11 , 1600276 ( 2017 ). http://doi.org/10.1002/lpor.201600276 http://doi.org/10.1002/lpor.201600276
G. Lihachev , W.L. Weng , J.Q. Liu , L. Chang , J. Guo , J.J. He , R.N. Wang , M.H. Anderson , Y. Liu , J.E. Bowers , T.J. Kippenberg , Platicon microcomb generation using laser self-injection locking . Nat. Commun. 13 , 1771 ( 2022 ). http://doi.org/10.1038/s41467-022-29431-0 http://doi.org/10.1038/s41467-022-29431-0
W.T. Wang , A. Aldhafeeri , H. Zhou , T. Melton , X.H. Jiang , A.K. Vinod , M. Yu , G.-Q. Lo , D.-L. Kwong , C.W. Wong , Polarization-diverse soliton transitions and deterministic switching dynamics in strongly-coupled and self-stabilized microresonator frequency combs . Commun. Phys. 7 , 279 ( 2024 ). http://doi.org/10.1038/s42005-024-01773-9 http://doi.org/10.1038/s42005-024-01773-9
G. Moille , M. Leonhardt , D. Paligora , N. Englebert , F. Leo , J. Fatome , K. Srinivasan , M. Erkintalo , Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity . Nat. Photon. 18 , 617 - 624 ( 2024 ). http://doi.org/10.1038/s41566-024-01401-6 http://doi.org/10.1038/s41566-024-01401-6
E. Lucas , S.-P. Yu , T.C. Briles , D.R. Carlson , S.B. Papp , Tailoring microcombs with inverse-designed, meta-dispersion microresonators . Nat. Photon. 17 , 943 - 950 ( 2023 ). http://doi.org/10.1038/s41566-023-01252-7 http://doi.org/10.1038/s41566-023-01252-7
S.-W. Huang , H. Zhou , J.H. Yang , J.F. McMillan , A. Matsko , M. Yu , D.-L. Kwong , L. Maleki , C.W. Wong , Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators . Phys. Rev. Lett. 114 ,( 2015 ). http://doi.org/10.1103/PhysRevLett.114.053901 http://doi.org/10.1103/PhysRevLett.114.053901
D.T. Spencer , T. Drake , T.C. Briles , J. Stone , L.C. Sinclair , C. Fredrick , Q. Li , D. Westly , B.R. Ilic , A. Bluestone , N. Volet , T. Komljenovic , L. Chang , S.H. Lee , D.Y. Oh , M.G. Suh , K.Y. Yang , M.P. Pfeiffer , T.J. Kippenberg , E. Norberg , L. Theogarajan , K. Vahala , N.R. Newbury , K. Srinivasan , J.E. Bowers , S.A. Diddams , S.B. Papp , An optical-frequency synthesizer using integrated photonics . Nature 557 , 81 - 85 ( 2018 ). http://doi.org/10.1038/s41586-018-0065-7 http://doi.org/10.1038/s41586-018-0065-7
S.-W. Huang , J.H. Yang , M. Yu , B.H. McGuyer , D.-L. Kwong , T. Zelevinsky , C.W. Wong , A broadband chip-scale optical frequency synthesizer at 2.7×10 –16 relative inaccuracy . Sci. Adv. 2 , e1501489 ( 2016 ). http://doi.org/10.1126/sciadv.1501489 http://doi.org/10.1126/sciadv.1501489
E. Obrzud , M. Rainer , A. Harutyunyan , M.H. Anderson , M. Geiselmann , B. Chazelas , S. Kundermann , S. Lecomte , M. Cecconi , A. Ghedina , E. Molinari , F. Pepe , F. Wildi , F. Bouchy , T.J. Kippenberg , T. Herr , A microphotonic astrocomb . Nat. Photon. 13 , 31 - 35 ( 2019 ). http://doi.org/10.1038/s41566-018-0309-y http://doi.org/10.1038/s41566-018-0309-y
M.G. Suh , X. Yi , Y.-H. Lai , S. Leifer , I.S. Grudinin , G. Vasisht , E.C. Martin , M.P. Fitzgerald , G. Doppmann , J. Wang , D. Mawet , S.B. Papp , S.A. Diddams , C. Beichman , K.J. Vahala , Searching for exoplanets using a microresonator astrocomb . Nat. Photon. 13 , 25 - 30 ( 2019 ). http://doi.org/10.1038/s41566-018-0312-3 http://doi.org/10.1038/s41566-018-0312-3
M.G. Suh , Q.-F. Yang , K.Y. Yang , X. Yi , K.J. Vahala , Microresonator soliton dual-comb spectroscopy . Science 354 , 600 - 603 ( 2016 ). http://doi.org/10.1126/science.aah6516 http://doi.org/10.1126/science.aah6516
A. Dutt , C. Joshi , X.C. Ji , J. Cardenas , Y. Okawachi , K. Luke , A.L. Gaeta , M. Lipson , On-chip dual-comb source for spectroscopy . Sci. Adv. 2 ,( 2018 ). http://doi.org/10.1126/sciadv.1701858 http://doi.org/10.1126/sciadv.1701858
M.J. Yu , Y. Okawachi , A.G. Griffith , N. Picqué , M. Lipson , A.L. Gaeta , Solicon-chip-based mid-infrared dual-comb spectroscopy . Nat. Commun. 9 , 1869 ( 2018 ). http://doi.org/10.1038/s41467-018-04350-1 http://doi.org/10.1038/s41467-018-04350-1
Y.-S. Jang , H. Liu , J.H. Yang , M.B. Yu , D.L. Kwong , C.W. Wong , Nanometric precision distance metrology via hybrid spectrally-resolved and homodyne interferometry in a single soliton frequency microcomb . Phys. Rev. Lett. 126 , 023903 ( 2021 ). http://doi.org/10.1103/PhysRevLett.126.023903 http://doi.org/10.1103/PhysRevLett.126.023903
M.G. Suh , K.J. Vahala , Soliton microcomb range measurement . Science 359 , 884 - 887 ( 2018 ). http://doi.org/10.1126/science.aao1968 http://doi.org/10.1126/science.aao1968
P. Trocha , M. Karpov , D. Ganin , M.H.P. Pfeiffer , A. Kordts , S. Wolf , J. Krockenberger , P.M. Palomo , C. Weimann , S. Randel , W. Freude , T.J. Kippenberg , C. Koos , Ultrafast optical ranging using microresonator soliton frequency combs . Science 359 , 887 - 891 ( 2018 ). http://doi.org/10.1126/science.aao3924 http://doi.org/10.1126/science.aao3924
J. Riemensberger , A. Lukashchuk , M. Karpov , W.L. Weng , E. Lucas , J.Q. Liu , T.J. Kippenberg , Massively parallel coherent laser ranging using a soliton microcomb . Nature 581 , 164 - 170 ( 2020 ). http://doi.org/10.1038/s41586-020-2239-3 http://doi.org/10.1038/s41586-020-2239-3
T. Tetsumoto , T. Nagatsuma , M.E. Fermann , G. Navickaite , M. Geiselmann , A. Rolland , Optically referenced 300 GHz millimetre-wave oscillator . Nat. Photon. 15 , 516 - 522 ( 2021 ). http://doi.org/10.1038/s41566-021-00790-2 http://doi.org/10.1038/s41566-021-00790-2
B. Wang , J.S. Morgan , K. Sun , M. Jahanbozorgi , Z. Yang , M. Woodson , S. Estrella , A. Beling , X. Yi , Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons . Light Sci. Appl. 10 ( 4 ), 1 ( 2021 ).
W. Wang , P.K. Lu , A.K. Vinod , D. Turan , J.F. McMillan , H. Liu , M. Yu , D.L. Kwong , M. Jarrahi , C.W. Wong , Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation . Nat. Commun. 13 , 5123 ( 2022 ). http://doi.org/10.1038/s41467-022-32739-6 http://doi.org/10.1038/s41467-022-32739-6
A. Aldhafeeri , H.-H. Chin , T. Melton , D.I. Lee , A. Chu , W.T. Wang , M.B. Yu , P.G.-Q. Lo , D.-L. Kwong , C.W. Wong , Low phase noise K-band signal generation using polarization diverse single-soliton integrated microcombs . Photon. Res. 12 , 1175 - 1185 ( 2024 ). http://doi.org/10.1364/PRJ.521282 http://doi.org/10.1364/PRJ.521282
I. Kudelin , W. Groman , Q.-X. Ji , J. Guo , M.L. Kelleher , D. Lee , T. Nakamura , C.A. McLemore , P. Shirmohammadi , S. Hanifi , H.T. Cheng , N.J. Jin , L. Wu , S. Halladay , Y.Z. Luo , Z.W. Dai , W. Jin , J.W. Bai , Y.F. Liu , W. Zhang , C. Xiang , L. Chang , V. Iltchenko , O. Miller , A. Matsko , S.M. Bowers , P.T. Rakich , J.C. Campbell , J.E. Bowers , K.J. Vahala , F. Quinlan , S.A. Diddams , Photonic chip-based low-noise microwave oscillator . Nature 627 , 534 - 539 ( 2024 ). http://doi.org/10.1038/s41586-024-07058-z http://doi.org/10.1038/s41586-024-07058-z
S.M. Sun , B.C. Wang , K.K. Liu , M.W. Harrington , F. Tabatabaei , R.X. Liu , J.W. Wang , S. Hanifi , J.S. Morgan , M. Jahanbozorgi , Z.J. Yang , S.M. Bowers , P.A. Morton , K.D. Nelson , A. Beling , D.J. Blumenthal , X. Yi , Integrated optical frequency division for microwave and mmWave generation . Nature 627 , 540 - 545 ( 2024 ). http://doi.org/10.1038/s41586-024-07057-0 http://doi.org/10.1038/s41586-024-07057-0
Y. Zhao , J.K. Jang , G.J. Beals , K.J. McNulty , X.C. Ji , Y. Okawachi , M. Lipson , A.L. Gaeta , All-optical frequency division on-chip using a single laser . Nature 627 , 546 - 552 ( 2024 ). http://doi.org/10.1038/s41586-024-07136-2 http://doi.org/10.1038/s41586-024-07136-2
J. Feldmann , N. Youngblood , M. Karpov , H. Gehring , X. Li , M. Stappers , M. Le Gallo , X. Fu , A. Lukashchuk , A.S. Raja , J. Liu , C.D. Wright , A. Sebastian , T.J. Kippenberg , W.H.P. Pernice , H. Bhaskaran , Parallel convolutional processing using an integrated photonic tensor core . Nature 589 , 52 - 58 ( 2021 ). http://doi.org/10.1038/s41586-020-03070-1 http://doi.org/10.1038/s41586-020-03070-1
X.Y. Xu , M.X. Tan , B. Corcoran , J.Y. Wu , A. Boes , T.G. Nguyen , S.T. Chu , B.E. Little , D.G. Hicks , R. Morandotti , A. Mitchell , D.J. Moss , 11 TOPS photonic convolutional accelerator for optical neural networks . Nature 589 , 44 - 51 ( 2021 ). http://doi.org/10.1038/s41586-020-03063-0 http://doi.org/10.1038/s41586-020-03063-0
P. Marin-Palomo , J.N. Kemal , M. Karpov , A. Kordts , J. Pfeifle , M.H.P. Pfeiffer , P. Trocha , S. Wolf , V. Brasch , M.H. Anderson , R. Rosenberger , K. Vijayan , W. Freude , T.J. Kippenberg , C. Koos , Microresonator-based solitons for massively parallel coherent optical communications . Nature 546 , 274 - 279 ( 2017 ). http://doi.org/10.1038/nature22387 http://doi.org/10.1038/nature22387
S. Fujii , S. Tanaka , T. Ohtsuka , S. Kogure , K. Wada , H. Kumazaki , S. Tasaka , Y. Hashimoto , Y. Kobayashi , T. Araki , K. Furusawa , N. Sekine , S. Kawanishi , T. Tanabe , Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels . Opt. Express 30 , 1351 - 1364 ( 2022 ). http://doi.org/10.1364/OE.447712 http://doi.org/10.1364/OE.447712
A. Fülöp , M. Mazur , A. Lorences-Riesgo , ÓB Helgason , P.-H. Wang , Y. Xuan , D.E. Leaird , M.H. Qi , P.A. Andrekson , A.M. Weiner , V. Torres-Company , High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators . Nat. Commun. 9 , 1598 ( 2018 ). http://doi.org/10.1038/s41467-018-04046-6 http://doi.org/10.1038/s41467-018-04046-6
B. Corcoran , M.X. Tan , X.Y. Xu , A. Boes , J.Y. Wu , T.G. Nguyen , S.T. Chu , B.E. Little , R. Morandotti , A. Mitchell , D.J. Moss , Ultra-dense optical data transmission over standard fibre with a single chip source . Nat. Commun. 11 , 2568 ( 2020 ). http://doi.org/10.1038/s41467-020-16265-x http://doi.org/10.1038/s41467-020-16265-x
L. Lundberg , M. Mazur , A. Mirani , B. Foo , J. Schröder , V. Torres-Company , M. Karlsson , P.A. Andrekson , Phase-coherent lightwave communications with frequency combs . Nat. Commun. 11 , 201 ( 2020 ). http://doi.org/10.1038/s41467-019-14010-7 http://doi.org/10.1038/s41467-019-14010-7
X.G. Zhang , Z.X. Zhou , Y.J. Guo , M.X. Zhuang , W. Jin , B.T. Shen , Y.J. Chen , J.H. Huang , Z.H. Tao , M. Jin , R.X. Chen , Z.F. Ge , Z. Fang , N. Zhang , Y.D. Liu , P.F. Cai , W.W. Hu , H.W. Shu , D. Pan , J.E. Bowers , X.J. Wang , L. Chang , High-coherence parallelization in integrated photonics . Nat. Commun. 15 , 7892 ( 2024 ). http://doi.org/10.1038/s41467-024-52269-7 http://doi.org/10.1038/s41467-024-52269-7
Y. Geng , H. Zhou , X. Han , W. Cui , Q. Zhang , B. Liu , G. Deng , Q. Zhou , K. Qiu , Coherent optical communications using coherence cloned Kerr soliton microcombs . Nat. Commun. 13 , 1070 ( 2022 ). http://doi.org/10.1038/s41467-022-28712-y http://doi.org/10.1038/s41467-022-28712-y
A.A. Jørgensen , D. Kong , M.R. Henriksen , F. Klejs , Z. Ye , ÒB Helgason , H.E. Hansen , H. Hu , M. Yankov , S. Forchhammer , P. Andrekson , A. Larsson , M. Karlsson , J. Schröder , Y. Sasaki , K. Aikawa , J.W. Thomsen , T. Morioka , M. Galili , V. Torres-Company , L.K. Oxenløwe , Petabit-per-second data transmission using a chip-scale microcomb ring resonator source . Nat. Photon. 16 , 798 - 802 ( 2022 ). http://doi.org/10.1038/s41566-022-01082-z http://doi.org/10.1038/s41566-022-01082-z
B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, 2.15 Pb/s transmission using a 22 cores homogeneous single- mode multi-core fiber and wideband optical comb. In 2015 European Conference on Optical Communication (ECOC) paper PDP.3.1 (2015).
K.Y. Yang , C. Shirpurkar , A.D. White , J.Z. Zang , L. Chang , F. Ashtiani , M.A. Guidry , D.M. Lukin , S.V. Pericherla , J. Yang , H. Kwon , J. Lu , G.H. Ahn , K.V. Gasse , Y. Jin , S.-P. Yu , T.C. Briles , J.R. Stone , D.R. Carlson , H. Song , K.H. Zou , H.B. Zhou , K. Pang , H. Hao , L. Trask , M.X. Li , A. Netherton , L. Rechtman , J.S. Stone , J.L. Skarda , L. Su , D. Vercruysse , J.-P.W. MacLean , S. Aghaeimeibodi , M.-J. Li , D.A.B. Miller , D.M. Marom , A.E. Willner , J.E. Bowers , S.B. Papp , P.J. Delfyett , F. Aflatouni , J. Vučković , Multi-dimensional data transmission using inverse designed silicon photonics and microcombs . Nat. Commun. 13 , 7862 ( 2022 ). http://doi.org/10.1038/s41467-022-35446-4 http://doi.org/10.1038/s41467-022-35446-4
H.W. Shu , L. Chang , Y.S. Tao , B.T. Shen , W.Q. Xie , M. Jin , A. Netherton , Z.H. Tao , X.G. Zhang , R.X. Chen , B.W. Bai , J. Qin , S.H. Yu , X.J. Wang , J.E. Bowers , Microcomb-driven silicon photonic systems . Nature 605 , 457 - 463 ( 2022 ). http://doi.org/10.1038/s41586-022-04579-3 http://doi.org/10.1038/s41586-022-04579-3
Y.B. Liu , H.Y. Zhang , J.C. Liu , L.J. Lu , J.B. Du , Y. Li , Z.Y. He , J.P. Chen , L.J. Zhou , A.W. Poon , Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings . Nat. Commun. 15 , 3645 ( 2024 ). http://doi.org/10.1038/s41467-024-47904-2 http://doi.org/10.1038/s41467-024-47904-2
D.M. Kong , Y. Liu , Z.Q. Ren , Y.M. Jung , C. Kim , Y. Chen , N.V. Wheeler , M.N. Petrovich , M.H. Pu , K. Yvind , M. Galili , L.K. Oxenløwe , D.J. Richardson , H. Hu , Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands . Nat. Commun. 13 , 4139 ( 2022 ). http://doi.org/10.1038/s41467-022-31884-2 http://doi.org/10.1038/s41467-022-31884-2
S.W. Jia , Z. Xie , W. Shao , Y. Wang , Y.C. He , D.Q. Zhang , P.X. Liao , W.Q. Wang , D.R. Gao , W. Wang , X.P. Xie , 150 Gbit/s 1 km high-sensitivity FSO communication outfield demonstration based on a soliton microcomb . Opt. Express 30 , 35300 ( 2022 ). http://doi.org/10.1364/OE.465803 http://doi.org/10.1364/OE.465803
W. Shao , Y. Wang , S.W. Jia , Z. Xie , D.R. Gao , W. Wang , D.Q. Zhang , P.X. Liao , B.E. Little , S.T. Chu , W. Zhao , W.F. Zhang , W.Q. Wang , X.P. Xie , Terabit FSO communication based on a soliton microcomb . Photon. Res. 10 , 2802 ( 2022 ). http://doi.org/10.1364/PRJ.473559 http://doi.org/10.1364/PRJ.473559
V.E. Lobanov , G. Lihachev , T.J. Kippenberg , M.L. Gorodetsky , Frequency combs and platicons in optical microresonators with normal GVD . Opt. Express 23 , 7713 ( 2015 ). http://doi.org/10.1364/OE.23.007713 http://doi.org/10.1364/OE.23.007713
R. Schmogrow , B. Nebendahl , M. Winter , A. Josten , D. Hillerkuss , S. Koenig , J. Meyer , M. Dreschmann , M. Huebner , C. Koos , J. Becker , W. Freude , J. Leuthold , Error vector magnitude as a performance measure for advanced modulation formats . IEEE Photon. Technol. Lett. 24 , 61 - 63 ( 2012 ). http://doi.org/10.1109/LPT.2011.2172405 http://doi.org/10.1109/LPT.2011.2172405
J. Pfeifle , V. Brasch , M. Lauermann , Y. Yu , D. Wegner , T. Herr , K. Hartinger , P. Schindler , J. Li , D. Hillerkuss , R. Schmogrow , Coherent terabit communications with microresonator Kerr frequency combs . Nat. Photon 8 , 375 - 380 ( 2014 ). http://doi.org/10.1038/nphoton.2014.57 http://doi.org/10.1038/nphoton.2014.57
A.A. Farid , S. Hranilovic , Outage capacity optimization for free-space optical links with pointing errors . J. Light. Technol. 25 , 1702 - 1710 ( 2007 ). http://doi.org/10.1109/JLT.2007.899174 http://doi.org/10.1109/JLT.2007.899174
J. Liu , A.S. Raja , M. Karpov , B. Ghadiani , M.H.P. Pfeiffer , B. Du , N.J. Engelsen , H.R. Guo , M. Zervas , T.J. Kippenberg , Ultralow-power chip-based soliton microcombs for photonic integration . Optica 5 , 1347 - 1353 ( 2018 ). http://doi.org/10.1364/OPTICA.5.001347 http://doi.org/10.1364/OPTICA.5.001347
Ó. B. Helgason, F. R. Arteaga-Sierra, Z. C. Ye, K. Twayana, P. A. Andrekson, M. Karlsson, J. Schröder, V. Torres-Company, Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021)
E. Nazemosadat , A. Fülöp , ÓB Helgason , P.-H. Wang , Y. Xuan , D.E. Leaird , M.H. Qi , E. Silvestre , A.M. Weiner , V. Torres-Company , Switching dynamics of dark-pulse Kerr comb states in optical microresonators . Phys. Rev. A 103 ,( 2021 ). http://doi.org/10.1103/PhysRevA.103.013513 http://doi.org/10.1103/PhysRevA.103.013513
B.Y. Kim , Y. Okawachi , J.K. Jang , M.J. Yu , X.C. Ji , Y. Zhao , C. Joshi , M. Lipson , A.L. Gaeta , Turn-key, high-efficiency Kerr comb source . Opt. Lett. 44 , 4475 - 4478 ( 2019 ). http://doi.org/10.1364/OL.44.004475 http://doi.org/10.1364/OL.44.004475
J.Q. Liu , E. Lucas , A.S. Raja , J.J. He , J. Riemensberger , R.N. Wang , M. Karpov , H.R. Guo , R. Bouchand , T.J. Kippenberg , Photonic microwave generation in the X- and K-band using integrated soliton microcombs . Nat. Photon 14 , 486 - 491 ( 2020 ). http://doi.org/10.1038/s41566-020-0617-x http://doi.org/10.1038/s41566-020-0617-x
X. Yi , Q.-F. Yang , K.Y. Yang , M.-G. Suh , K. Vahala , Soliton frequency comb at microwave rates in a high- Q silica microresonator . Optica 2 , 1078 - 1085 ( 2015 ). http://doi.org/10.1364/OPTICA.2.001078 http://doi.org/10.1364/OPTICA.2.001078
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution