无数据
cliu_fang@tsinghua.edu.cn
myidonghuang@tsinghua.edu.cn
Received:03 December 2024,
Revised:24 February 2025,
Accepted:03 March 2025,
Published Online:17 April 2025,
Published:2025-12
Scan QR Code
Pump-induced stimulated superradiant Smith-Purcell radiation with ultra-narrow linewidth[J]. Elight, 2025, 5.
Pump-induced stimulated superradiant Smith-Purcell radiation with ultra-narrow linewidth[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00083-z.
Lasers with the gain medium of gas
liquid
semiconductor
and solid could generate coherent light with rather narrow spectral linewidth
which play an important role in the fields of communication
measurement
sensing
and so on. Although free electron lasers have been realized with their unique advantages
they face challenges in narrowing the spectral linewidth
owing to electron energy fluctuation
Coulomb effect
and other mechanism. Here we demonstrate the superradiant Smith-Purcell radiation (S-SPR) in terahertz frequency band with ultra-narrow and continuously tunable linewidth in a compact device. By proposing a new effect of pump-induced stimulated S-SPR (PIS-SPR)
the spectral linewidth could be reduced to 0.3 kHz @ 291.7 GHz
which is about two–six orders of magnitude narrower compared with those obtained by accelerators and other electron devices. Meanwhile
the wide range of continuously tunable spectral linewidth spanning 0.3–900 kHz is observed for the first time. This work provides a way to greatly narrow the spectral linewidth of free electron radiation and to achieve high-order harmonic of S-SPR in a compact device
and offers a platform to study the interaction between free electron bunches and different micro-&nano-structures.
A. Einstein , Zur Quantentheorie der Strahlung [On the quantum theory of radiation] . Physikalische Zeitschrift 18 , 121 - 128 ( 1917 ).
J.P. Gordon , H.J. Zeiger , C.H. Townes , Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH₃ . Phys. Rev. 95 , 282 - 284 ( 1954 ). http://doi.org/10.1103/PhysRev.95.282 http://doi.org/10.1103/PhysRev.95.282
A.L. Schawlow , C.H. Townes , Infrared and optical masers . Phys. Rev. 112 , 1940 - 1949 ( 1958 ). http://doi.org/10.1103/PhysRev.112.1940 http://doi.org/10.1103/PhysRev.112.1940
Z.X. Bai et al. , A comprehensive review on the development and applications of narrow-linewidth lasers . Microw. Opt. Technol. Lett. 64 , 2244 - 2255 ( 2022 ). http://doi.org/10.1002/mop.33046 http://doi.org/10.1002/mop.33046
D.J. Joe et al. , Laser-material interactions for flexible applications . Adv. Mater. 29 , 1606586 ( 2017 ). http://doi.org/10.1002/adma.201606586 http://doi.org/10.1002/adma.201606586
H. Al-Taiy , N. Wenzel , S. Preussler , J. Klinger , T. Schneider , Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy . Opt. Lett. 39 , 5826 - 5829 ( 2014 ). http://doi.org/10.1364/OL.39.005826 http://doi.org/10.1364/OL.39.005826
M. Ross et al. , Space optical communications with the Nd:YAG laser . Proc. IEEE 66 , 319 - 344 ( 1978 ). http://doi.org/10.1109/PROC.1978.10903 http://doi.org/10.1109/PROC.1978.10903
R.R. Gattass , E. Mazur , Femtosecond laser micromachining in transparent materials . Nat. Photonics 2 , 219 - 225 ( 2008 ). http://doi.org/10.1038/nphoton.2008.47 http://doi.org/10.1038/nphoton.2008.47
L. Yang et al. , Laser printed microelectronics . Nat. Commun. 14 , 1103 ( 2023 ). http://doi.org/10.1038/s41467-023-36722-7 http://doi.org/10.1038/s41467-023-36722-7
D.K. Killinger , N. Menyuk , Laser remote-sensing of the atmosphere . Science 235 , 37 - 45 ( 1987 ). http://doi.org/10.1126/science.235.4784.37 http://doi.org/10.1126/science.235.4784.37
M. Hosseini , G. Guccione , H.J. Slatyer , B.C. Buchler , P.K. Lam , Multimode laser cooling and ultra-high sensitivity force sensing with nanowires . Nat. Commun. 5 , 4663 ( 2014 ). http://doi.org/10.1038/ncomms5663 http://doi.org/10.1038/ncomms5663
P.A. Cherenkov , Visible light from clear liquids under the action of gamma radiation . Comptes Rendus de l'Académie des Sciences de l'URSS 2 , 451 - 454 ( 1934 ).
F. Liu et al. , Integrated Cherenkov radiation emitter eliminating the electron velocity threshold . Nat. Photonics 11 , 289 - 292 ( 2017 ). http://doi.org/10.1038/nphoton.2017.45 http://doi.org/10.1038/nphoton.2017.45
G. Doucas , J.H. Mulvey , M. Omori , J. Walsh , M.F. Kimmitt , First observation of Smith-Purcell radiation from relativistic electrons . Phys. Rev. Lett. 69 , 1761 - 1764 ( 1992 ). http://doi.org/10.1103/PhysRevLett.69.1761 http://doi.org/10.1103/PhysRevLett.69.1761
S.J. Smith , E.M. Purcell , Visible light from localized surface charges moving across a grating . Phys. Rev. 92 , 1069 ( 1953 ). http://doi.org/10.1103/PhysRev.92.1069 http://doi.org/10.1103/PhysRev.92.1069
F.R. Elder , R.V. Langmuir , H.C. Pollock , Radiation from electrons accelerated in a synchrotron . Phys. Rev. 74 , 52 - 56 ( 1948 ). http://doi.org/10.1103/PhysRev.74.52 http://doi.org/10.1103/PhysRev.74.52
T. Nakazato et al. , Observation of coherent synchrotron radiation . Phys. Rev. Lett. 63 , 1245 - 1248 ( 1989 ). http://doi.org/10.1103/PhysRevLett.63.1245 http://doi.org/10.1103/PhysRevLett.63.1245
D.F. Alferov , A.B. Yu , P.A. Cherenkov , Radiation from relativistic electrons in a magnetic undulator . Soviet Physics Uspekhi 32 , 200 ( 1989 ). http://doi.org/10.1070/PU1989v032n03ABEH002688 http://doi.org/10.1070/PU1989v032n03ABEH002688
H. Boersch , C. Radeloff , G. Sauerbrey , Experimental detection of transition radiation . Phys. Rev. Lett. 7 , 52 ( 1961 ). http://doi.org/10.1103/PhysRevLett.7.52 http://doi.org/10.1103/PhysRevLett.7.52
L.R. Elias , W.M. Fairbank , J.M.J. Madey , H.A. Schwettman , T.I. Smith , Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic-field . Phys. Rev. Lett. 36 , 717 - 720 ( 1976 ). http://doi.org/10.1103/PhysRevLett.36.717 http://doi.org/10.1103/PhysRevLett.36.717
D.A.G. Deacon et al. , First operation of a free-electron laser . Phys. Rev. Lett. 38 , 892 - 894 ( 1977 ). http://doi.org/10.1103/PhysRevLett.38.892 http://doi.org/10.1103/PhysRevLett.38.892
P. Emma et al. , First lasing and operation of an angstrom-wavelength free-electron laser . Nat. Photonics 4 , 641 - 647 ( 2010 ). http://doi.org/10.1038/nphoton.2010.176 http://doi.org/10.1038/nphoton.2010.176
Y.F. Liang et al. , Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams . Appl. Phys. Lett. 112 ,( 2018 ). http://doi.org/10.1063/1.5009396 http://doi.org/10.1063/1.5009396
A. Aryshev et al. , Monochromaticity of coherent Smith-Purcell radiation from finite size grating . Phys. Rev. Accel. Beams 20 ,( 2017 ). http://doi.org/10.1103/PhysRevAccelBeams.20.024701 http://doi.org/10.1103/PhysRevAccelBeams.20.024701
J.C. Gallardo , L. Elias , G. Dattoli , A. Renieri , Instability in a multimode free-electron laser—effects of electron-energy drift . Phys. Rev. A 34 , 3088 - 3100 ( 1986 ). http://doi.org/10.1103/PhysRevA.34.3088 http://doi.org/10.1103/PhysRevA.34.3088
K.J. Kim , Spectral bandwidth in free-electron-laser oscillators . Phys. Rev. Lett. 66 , 2746 - 2749 ( 1991 ). http://doi.org/10.1103/PhysRevLett.66.2746 http://doi.org/10.1103/PhysRevLett.66.2746
J. Urata et al. , Superradiant Smith-Purcell emission . Phys. Rev. Lett. 80 , 516 - 519 ( 1998 ). http://doi.org/10.1103/PhysRevLett.80.516 http://doi.org/10.1103/PhysRevLett.80.516
B.E. Billinghurst et al. , Observation of superradiant synchrotron radiation in the terahertz region . Phys. Rev. Spec. Top. Accel Beams 16 ,( 2013 ). http://doi.org/10.1103/PhysRevSTAB.16.060702 http://doi.org/10.1103/PhysRevSTAB.16.060702
D.Y. Sergeeva , A.P. Potylitsyn , A.A. Tishchenko , M.N. Strikhanov , Smith-Purcell radiation from periodic beams . Opt. Express 25 , 26310 - 26328 ( 2017 ). http://doi.org/10.1364/OE.25.026310 http://doi.org/10.1364/OE.25.026310
B.S. Dumesh , V.P. Kostromin , F.S. Rusin , L.A. Surin , Highly sensitive millimeter-wave spectrometer based on an orotron . Meas. Sci. Technol. 3 , 873 - 878 ( 1992 ). http://doi.org/10.1088/0957-0233/3/9/012 http://doi.org/10.1088/0957-0233/3/9/012
Y.A. Grishin et al. , Pulsed orotron—a new microwave source for submillimeter pulse high-field electron paramagnetic resonance spectroscopy . Rev. Sci. Instrum. 75 , 2926 - 2936 ( 2004 ). http://doi.org/10.1063/1.1778071 http://doi.org/10.1063/1.1778071
S.E. Korbly , A.S. Kesar , J.R. Sirigiri , R.J. Temkin , Observation of frequency-locked coherent terahertz Smith-Purcell radiation . Phys. Rev. Lett. 94 ,( 2005 ). http://doi.org/10.1103/PhysRevLett.94.054803 http://doi.org/10.1103/PhysRevLett.94.054803
Y.X. Zhang , L. Dong , Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams . Opt. Express 20 , 22627 - 22635 ( 2012 ). http://doi.org/10.1364/OE.20.022627 http://doi.org/10.1364/OE.20.022627
Y.C. Zhou , Y.X. Zhang , S.G. Liu , Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity . IEEE Trans. Terahertz Sci. Technol. 6 , 262 - 267 ( 2016 ). http://doi.org/10.1109/TTHZ.2016.2516524 http://doi.org/10.1109/TTHZ.2016.2516524
Z.J. Shi et al. , Coherent terahertz Smith-Purcell radiation from beam bunching . Nucl. Instrum. Methods Phys. Res. Sect. A 578 , 543 - 547 ( 2007 ). http://doi.org/10.1016/j.nima.2007.05.315 http://doi.org/10.1016/j.nima.2007.05.315
A.M. Cook et al. , Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA . IEEE Trans. Electron Devices 61 , 43 - 49 ( 2014 ).
X. Xing et al., Enhanced coherent THz radiation by dual groove grating Smith-Purcell effect. 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) , 1–2. (2020)
K. Nguyen et al. , Analysis of the 425-MHz klystrode . IEEE Trans. Electron Devices 38 , 2212 - 2220 ( 1991 ). http://doi.org/10.1109/16.88501 http://doi.org/10.1109/16.88501
M. Garven et al., Characterization of field emitter arrays (FEAs) for a twystrode amplifier. 1997 IEEE International Conference on Plasma Science . 283 (1997)
N.V. Sapra et al. , On-chip integrated laser-driven particle accelerator . Science 367 , 79 - 83 ( 2020 ). http://doi.org/10.1126/science.aay5734 http://doi.org/10.1126/science.aay5734
P. Pan et al. , Demonstration of a 263-GHz traveling wave tube for electron paramagnetic resonance spectroscopy. IEEE Transactions on Electron Devices ( Advance online publication , New York City , 2023 ).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution