
无数据
Received:21 September 2025,
Revised:2025-10-16,
Accepted:24 October 2025,
Published Online:06 November 2025,
Published:2025-12
Scan QR Code
Md Sadman Sakib Rahman, Yuhang Li, Xilin Yang, et al. Massively parallel and universal approximation of nonlinear functions using diffractive processors[J]. eLight, 2025, 5.
Md Sadman Sakib Rahman, Yuhang Li, Xilin Yang, et al. Massively parallel and universal approximation of nonlinear functions using diffractive processors[J]. eLight, 2025, 5. DOI: 10.1186/s43593-025-00113-w.
Nonlinear computation is essential for a wide range of information processing tasks
yet implementing nonlinear functions using optical systems remains a challenge due to the weak and power-intensive nature of optical nonlinearities. Overcoming this limitation without relying on nonlinear optical materials could unlock unprecedented opportunities for ultrafast and parallel optical computing systems. Here
we demonstrate that large-scale nonlinear computation can be performed using linear optics through optimized diffractive processors composed of passive phase-only surfaces. In this framework
the input variables of nonlinear functions are encoded into the phase of an optical wavefront—e.g.
via a spatial light modulator (SLM)—and transformed by an optimized diffractive structure with spatially varying point-spread functions to yield output intensities that approximate a large set of unique nonlinear functions–all in parallel. We provide proof establishing that this architecture serves as a universal function approximator for an arbitrary set of bandlimited nonlinear functions
also covering wavelength-multiplexed nonlinear functions as well as multi-variate and complex-valued functions that are all-optically cascadable. Our analysis also indicates the successful approximation of typical nonlinear activation functions commonly used in neural networks
including the sigmoid
tanh
ReLU (rectified linear unit)
and softplus. We numerically demonstrate the parallel computation of one million distinct nonlinear functions
accurately executed at wavelength-scale spatial density at the output of a diffractive optical processor. Furthermore
we experimentally validated this framework using in situ optical learning and approximated 35 unique nonlinear functions in a single shot using a compact setup consisting of an SLM and an image sensor. These results establish diffractive optical processors as a scalable platform for massively parallel universal nonlinear function approximation
paving the way for new capabilities in analog optical computing based on linear materials.
J. Shalf , The future of computing beyond Moore’s law . Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 378 ,( 2020 ).
S. E. Fahlman, G. E. Hinton, T. J. Sejnowski. Massively parallel architectures for AI: netl, thistle, and boltzmann machines. in Proceedings of the Third AAAI Conference on Artificial Intelligence 109–113 (AAAI Press, Washington, D.C., 1983).
K.M. Stiefel , J.S. Coggan , The energy challenges of artificial superintelligence . Front. Artif. Intell. 6 , 1240653 ( 2023 ). http://doi.org/10.3389/frai.2023.1240653 http://doi.org/10.3389/frai.2023.1240653
D. Marković , A. Mizrahi , D. Querlioz , J. Grollier , Physics for neuromorphic computing . Nat. Rev. Phys. 2 , 499 - 510 ( 2020 ). http://doi.org/10.1038/s42254-020-0208-2 http://doi.org/10.1038/s42254-020-0208-2
The future of deep learning is photonic. IEEE spectrum https://spectrum.ieee.org/the-future-of-deep-learning-is-photonic https://spectrum.ieee.org/the-future-of-deep-learning-is-photonic (2021).
C. Li , X. Zhang , J. Li , T. Fang , X. Dong , The challenges of modern computing and new opportunities for optics . PhotoniX 2 , 20 ( 2021 ). http://doi.org/10.1186/s43074-021-00042-0 http://doi.org/10.1186/s43074-021-00042-0
R. Li et al. , Photonics for neuromorphic computing: fundamentals, devices, and opportunities . Adv. Mater. 37 , 2312825 ( 2025 ). http://doi.org/10.1002/adma.202312825 http://doi.org/10.1002/adma.202312825
B.J. Shastri et al. , Photonics for artificial intelligence and neuromorphic computing . Nat. Photonics 15 , 102 - 114 ( 2021 ). http://doi.org/10.1038/s41566-020-00754-y http://doi.org/10.1038/s41566-020-00754-y
X. Lin et al. , All-optical machine learning using diffractive deep neural networks . Science 361 , 1004 - 1008 ( 2018 ). http://doi.org/10.1126/science.aat8084 http://doi.org/10.1126/science.aat8084
B. Bai et al. , To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects . eLight 2 ,( 2022 ). http://doi.org/10.1186/s43593-022-00021-3 http://doi.org/10.1186/s43593-022-00021-3
Y. Luo et al. , Computational imaging without a computer: seeing through random diffusers at the speed of light . ELight 2 ,( 2022 ). http://doi.org/10.1186/s43593-022-00012-4 http://doi.org/10.1186/s43593-022-00012-4
J. Hu et al. , Diffractive optical computing in free space . Nat. Commun. 15 , 1525 ( 2024 ). http://doi.org/10.1038/s41467-024-45982-w http://doi.org/10.1038/s41467-024-45982-w
T. A. Bartlett, et al. Recent advances in the development of the Texas Instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. in Emerging Digital Micromirror Device Based Systems and Applications XIII vol. 11698 103–116 (SPIE, 2021).
Y. Yang , A. Forbes , L. Cao , A review of liquid crystal spatial light modulators: devices and applications . Opto-Electron. Sci. 2 , 230026 - 230029 ( 2023 ). http://doi.org/10.29026/oes.2023.230026 http://doi.org/10.29026/oes.2023.230026
Y. LeCun , Y. Bengio , G. Hinton , Deep learning . Nature 521 , 436 - 444 ( 2015 ). http://doi.org/10.1038/nature14539 http://doi.org/10.1038/nature14539
B. Bai et al. , Data-class-specific all-optical transformations and encryption . Adv. Mater. 35 , 2212091 ( 2023 ). http://doi.org/10.1002/adma.202212091 http://doi.org/10.1002/adma.202212091
M. Yildirim , N.U. Dinc , I. Oguz , D. Psaltis , C. Moser , Nonlinear processing with linear optics . Nat. Photonics 18 , 1076 - 1082 ( 2024 ). http://doi.org/10.1038/s41566-024-01494-z http://doi.org/10.1038/s41566-024-01494-z
O. Kulce , D. Mengu , Y. Rivenson , A. Ozcan , All-optical information-processing capacity of diffractive surfaces . Light Sci. Appl. 10 , 25 ( 2021 ). http://doi.org/10.1038/s41377-020-00439-9 http://doi.org/10.1038/s41377-020-00439-9
O. Kulce , D. Mengu , Y. Rivenson , A. Ozcan , All-optical synthesis of an arbitrary linear transformation using diffractive surfaces . Light Sci. Appl. 10 , 196 ( 2021 ). http://doi.org/10.1038/s41377-021-00623-5 http://doi.org/10.1038/s41377-021-00623-5
M.S.S. Rahman , X. Yang , J. Li , B. Bai , A. Ozcan , Universal linear intensity transformations using spatially incoherent diffractive processors . Light Sci. Appl. 12 , 195 ( 2023 ). http://doi.org/10.1038/s41377-023-01234-y http://doi.org/10.1038/s41377-023-01234-y
X. Yang , M.S.S. Rahman , B. Bai , J. Li , A. Ozcan , Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks . Adv. Photon. Nexus 3 ,( 2024 ). http://doi.org/10.1117/1.APN.3.1.016010 http://doi.org/10.1117/1.APN.3.1.016010
M.S.S. Rahman , A. Ozcan , Universal point spread function engineering for 3D optical information processing . Light Sci. Appl. 14 , 212 ( 2025 ). http://doi.org/10.1038/s41377-025-01887-x http://doi.org/10.1038/s41377-025-01887-x
K. Hornik , M. Stinchcombe , H. White , Multilayer feedforward networks are universal approximators . Neural Netw. 2 , 359 - 366 ( 1989 ). http://doi.org/10.1016/0893-6080(89)90020-8 http://doi.org/10.1016/0893-6080(89)90020-8
C. Aparajit et al. , Efficient second-harmonic generation of a high-energy, femtosecond laser pulse in a lithium triborate crystal . Opt. Lett. 46 , 3540 - 3543 ( 2021 ). http://doi.org/10.1364/OL.423725 http://doi.org/10.1364/OL.423725
Y. Wang et al. , Direct electrical modulation of second-order optical susceptibility via phase transitions . Nat. Electron. 4 , 725 - 730 ( 2021 ). http://doi.org/10.1038/s41928-021-00655-0 http://doi.org/10.1038/s41928-021-00655-0
F. Yi et al. , Optomechanical enhancement of doubly resonant 2d optical nonlinearity . Nano Lett. 16 , 1631 - 1636 ( 2016 ). http://doi.org/10.1021/acs.nanolett.5b04448 http://doi.org/10.1021/acs.nanolett.5b04448
H. Long et al. , Tuning nonlinear optical absorption properties of WS2 nanosheets . Nanoscale 7 , 17771 - 17777 ( 2015 ). http://doi.org/10.1039/C5NR04389A http://doi.org/10.1039/C5NR04389A
Z. Sun et al. , Graphene mode-locked ultrafast laser . ACS Nano 4 , 803 - 810 ( 2010 ). http://doi.org/10.1021/nn901703e http://doi.org/10.1021/nn901703e
E. Klopfer , M. Lawrence , D.R.I. Barton , J. Dixon , J.A. Dionne , Dynamic focusing with high-quality-factor metalenses . Nano Lett. 20 , 5127 - 5132 ( 2020 ). http://doi.org/10.1021/acs.nanolett.0c01359 http://doi.org/10.1021/acs.nanolett.0c01359
X. Chen et al. , Optical nonlinearity and non-reciprocal transmission of graphene integrated metasurface . Carbon 173 , 126 - 134 ( 2021 ). http://doi.org/10.1016/j.carbon.2020.10.076 http://doi.org/10.1016/j.carbon.2020.10.076
M. Vatteroni, D. Covi, A. Sartori. A linear-logarithmic CMOS pixel for high dynamic range behavior with fixed-pattern-noise correction and tunable responsivity. in 2008 IEEE SENSORS 930–933 (2008). https://doi.org/10.1109/ICSENS.2008.4716593 10.1109/ICSENS.2008.4716593 .
S. Hirata , K. Totani , T. Yamashita , C. Adachi , M. Vacha , Large reverse saturable absorption under weak continuous incoherent light . Nat. Mater. 13 , 938 - 946 ( 2014 ). http://doi.org/10.1038/nmat4081 http://doi.org/10.1038/nmat4081
Y. Kobayashi , J. Abe , Recent advances in low-power-threshold nonlinear photochromic materials . Chem. Soc. Rev. 51 , 2397 - 2415 ( 2022 ). http://doi.org/10.1039/D1CS01144H http://doi.org/10.1039/D1CS01144H
S. Ducharme , J. Feinberg , Altering the photorefractive properties of BaTiO 3 by reduction and oxidation at 650°C . JOSA B 3 , 283 - 292 ( 1986 ). http://doi.org/10.1364/JOSAB.3.000283 http://doi.org/10.1364/JOSAB.3.000283
L. Xue et al. , The photorefractive response of Zn and Mo codoped LiNbO3 in the visible region . Crystals 9 , 228 ( 2019 ). http://doi.org/10.3390/cryst9050228 http://doi.org/10.3390/cryst9050228
K. Usui , K. Matsumoto , E. Katayama , N. Akamatsu , A. Shishido , A deformable low-threshold optical limiter with oligothiophene-doped liquid crystals . ACS Appl. Mater. Interfaces 13 , 23049 - 23056 ( 2021 ). http://doi.org/10.1021/acsami.1c06951 http://doi.org/10.1021/acsami.1c06951
A. Partovi et al. , Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices . Appl. Phys. Lett. 62 , 464 - 466 ( 1993 ). http://doi.org/10.1063/1.108934 http://doi.org/10.1063/1.108934
E. Canoglu et al. , Carrier transport in a photorefractive multiple quantum well device . Appl. Phys. Lett. 69 , 316 - 318 ( 1996 ). http://doi.org/10.1063/1.118045 http://doi.org/10.1063/1.118045
A. Dongol , J. Thompson , H. Schmitzer , D. Tierney , H.P. Wagner , Real-time contrast-enhanced holographic imaging using phase coherent photorefractive quantum wells . Opt. Express 23 , 12795 - 12807 ( 2015 ). http://doi.org/10.1364/OE.23.012795 http://doi.org/10.1364/OE.23.012795
I.C. Khoo , M.V. Wood , M.Y. Shih , P.H. Chen , Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection . Opt. Express 4 , 432 - 442 ( 1999 ). http://doi.org/10.1364/OE.4.000432 http://doi.org/10.1364/OE.4.000432
Y. Li , J. Li , A. Ozcan , Nonlinear encoding in diffractive information processing using linear optical materials . Light Sci. Appl. 13 , 173 ( 2024 ). http://doi.org/10.1038/s41377-024-01529-8 http://doi.org/10.1038/s41377-024-01529-8
F. Xia et al. , Nonlinear optical encoding enabled by recurrent linear scattering . Nat. Photonics 18 , 1067 - 1075 ( 2024 ). http://doi.org/10.1038/s41566-024-01493-0 http://doi.org/10.1038/s41566-024-01493-0
C.C. Wanjura , F. Marquardt , Fully nonlinear neuromorphic computing with linear wave scattering . Nat. Phys. 20 , 1434 - 1440 ( 2024 ). http://doi.org/10.1038/s41567-024-02534-9 http://doi.org/10.1038/s41567-024-02534-9
D. Zhang et al. , Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array . Nat. Commun. 15 , 2433 ( 2024 ). http://doi.org/10.1038/s41467-024-46387-5 http://doi.org/10.1038/s41467-024-46387-5
J. Li et al. , Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network . Adv. Photon. 5 ,( 2023 ). http://doi.org/10.1117/1.AP.5.1.016003 http://doi.org/10.1117/1.AP.5.1.016003
S. Häfner et al. , 8 × 10 –17 fractional laser frequency instability with a long room-temperature cavity . Opt. Lett. 40 , 2112 - 2115 ( 2015 ). http://doi.org/10.1364/OL.40.002112 http://doi.org/10.1364/OL.40.002112
Pigtailed external cavity (ECL) Single-frequency lasers, butt erfly package. https://www.thorlabs.com https://www.thorlabs.com .
L. Chen et al. , 698-nm diode laser with 1-Hz linewidth . Opt. Eng. 56 ,( 2017 ). http://doi.org/10.1117/1.OE.56.1.016101 http://doi.org/10.1117/1.OE.56.1.016101
ORS-Compact | Menlo Systems Compact Ultrastable Laser System. Menlo Systems https://www.menlosystems.com/products/ultrastable-lasers/ors-compact/ https://www.menlosystems.com/products/ultrastable-lasers/ors-compact/ .
Y.N. Zhao et al. , Sub-hertz frequency stabilization of a commercial diode laser . Opt. Commun. 283 , 4696 - 4700 ( 2010 ). http://doi.org/10.1016/j.optcom.2010.06.079 http://doi.org/10.1016/j.optcom.2010.06.079
N. Chabbra et al. , High stability laser locking to an optical cavity using tilt locking . Opt. Lett. 46 , 3199 - 3202 ( 2021 ). http://doi.org/10.1364/OL.427615 http://doi.org/10.1364/OL.427615
Foveon X3 sensor. Wikipedia (2024).
B. E. Boser, I. M. Guyon, V. N. Vapnik. A training algorithm for optimal margin classifiers. in Proceedings of the fifth annual workshop on Computational learning theory 144–152 (Association for Computing Machinery, New York, NY, USA, 1992). https://doi.org/10.1145/130385.130401 10.1145/130385.130401 .
G. Cybenko , Approximation by superpositions of a sigmoidal function . Math. Control Signals Syst. 2 , 303 - 314 ( 1989 ). http://doi.org/10.1007/BF02551274 http://doi.org/10.1007/BF02551274
Gray, J. The biggest digital camera ever is ready to solve cosmic mysteries 3200 megapixels at a time. PetaPixel https://petapixel.com/2024/04/03/the-biggest-camera-ever-is-ready-to-solve-cosmic-mysteries-3200-megapixels-at-a-time/ https://petapixel.com/2024/04/03/the-biggest-camera-ever-is-ready-to-solve-cosmic-mysteries-3200-megapixels-at-a-time/ (2024).
Canon develops CMOS sensor with 410 megapixels, the largest number of pixels ever achieved in a 35 mm full-frame sensor. Canon Global https://global.canon/en/news/2025/20250122.html https://global.canon/en/news/2025/20250122.html .
Fujifilm GFX100 II. Wikipedia (2025).
K. Cooper , Scalable nanomanufacturing—a review . Micromachines 8 , 20 ( 2017 ). http://doi.org/10.3390/mi8010020 http://doi.org/10.3390/mi8010020
S.K. Saha et al. , Scalable submicrometer additive manufacturing . Science 366 , 105 - 109 ( 2019 ). http://doi.org/10.1126/science.aax8760 http://doi.org/10.1126/science.aax8760
H.-N. Barad , H. Kwon , M. Alarcón-Correa , P. Fischer , Large area patterning of nanoparticles and nanostructures: current status and future prospects . ACS Nano 15 , 5861 - 5875 ( 2021 ). http://doi.org/10.1021/acsnano.0c09999 http://doi.org/10.1021/acsnano.0c09999
C.-Y. Shen, et al. Broadband unidirectional visible imaging using wafer-scale nano-fabrication of multi-layer diffractive optical processors. Preprint at https://doi.org/10.48550/arXiv.2412.11374 10.48550/arXiv.2412.11374 (2024).
Born, M., Wolf, E. & Bhatia, A. B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light . (Cambridge University Press, 1999).
J. W Goodman. Introduction to Fourier Optics . (Roberts and Company Publishers, 2005).
D. Mengu et al. , Misalignment resilient diffractive optical networks . Nanophotonics 9 , 4207 - 4219 ( 2020 ). http://doi.org/10.1515/nanoph-2020-0291 http://doi.org/10.1515/nanoph-2020-0291
R. S. Sut ton, D. McAllester, S. Singh, Y. Mansour. Policy gradient methods for reinforcement learning with function approximation. in Advances in Neural Information Processing Systems vol. 12 (MIT Press, 1999).
G. Zhao, X. Shu, R. Zhou. High-performance real-world optical computing trained by in situ model-free optimization. Preprint at http://arxiv.org/abs/2307.11957 http://arxiv.org/abs/2307.11957 (2023).
Skalli, A. et al. Model-free front-to-end training of a large high performance laser neural network. Preprint at https://doi.org/10.48550/arXiv.2503.16943 10.48550/arXiv.2503.16943 (2025).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621