h chengxb@tongji.edu.cn
j markus.raschke@colorado.edu
k tjiang@tongji.edu.cn
收稿日期:2024-09-01,
修回日期:2024-10-20,
录用日期:2024-11-05,
网络出版日期:2025-01-13,
纸质出版日期:2025-12
Scan QR Code
Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy[J]. eLight, 2025,5.
Zhichen Zhao, Vasily Kravtsov, Zerui Wang, et al. Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy[J]. Elight, 2025, 5.
Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy[J]. eLight, 2025,5. DOI: 10.1186/s43593-024-00079-1.
Zhichen Zhao, Vasily Kravtsov, Zerui Wang, et al. Applications of ultrafast nano-spectroscopy and nano-imaging with tip-based microscopy[J]. Elight, 2025, 5. DOI: 10.1186/s43593-024-00079-1.
Innovation in microscopy has often been critical in advancing both fundamental science and technological progress. Notably
the evolution of ultrafast near-field optical nano-spectroscopy and nano-imaging has unlocked the ability to image at spatial scales from nanometers to ångströms and temporal scales from nanoseconds to femtoseconds. This approach revealed a plethora of fascinating light-matter states and quantum phenomena
including various species of polaritons
quantum phases
and complex many-body effects. This review focuses on the working principles and state-of-the-art development of ultrafast tip-enhanced and near-field microscopy
integrating diverse optical pump-probe methods across the terahertz (THz) to ultraviolet (UV) spectral ranges. It highlights their utility in examining a broad range of materials
including two-dimensional (2D)
organic molecular
and hybrid materials. The review concludes with a spatio-spectral-temporal comparison of ultrafast nano-imaging techniques
both within already well-defined domains
and offering an outlook on future developments of ultrafast tip-based microscopy and their potential to address a wider range of materials.
Q. Zhang et al. , Interface nano-optics with van der Waals polaritons . Nature 597 , 187 - 195 ( 2021 ). http://doi.org/10.1038/s41586-021-03581-5 http://doi.org/10.1038/s41586-021-03581-5
D. Basov , M. Fogler , F. García de Abajo , Polaritons in van der Waals materials . Science 354 , aag1992 ( 2016 ). http://doi.org/10.1126/science.aag1992 http://doi.org/10.1126/science.aag1992
T. Low et al. , Polaritons in layered two-dimensional materials . Nat. Mater. 16 , 182 - 194 ( 2017 ). http://doi.org/10.1038/nmat4792 http://doi.org/10.1038/nmat4792
X. Guo et al. , Polaritons in van der Waals heterostructures . Adv. Mater. 35 , 2201856 ( 2023 ). http://doi.org/10.1002/adma.202201856 http://doi.org/10.1002/adma.202201856
G. Hu , J. Shen , C.-W. Qiu , A. Alù , S. Dai , Phonon polaritons and hyperbolic response in van der Waals materials . Adv. Opt. Mater. 8 , 1901393 ( 2020 ). http://doi.org/10.1002/adom.201901393 http://doi.org/10.1002/adom.201901393
J.D. Caldwell et al. , Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons . Nanophotonics 4 , 44 - 68 ( 2015 ). http://doi.org/10.1515/nanoph-2014-0003 http://doi.org/10.1515/nanoph-2014-0003
W. Ma et al. , In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal . Nature 562 , 557 - 562 ( 2018 ). http://doi.org/10.1038/s41586-018-0618-9 http://doi.org/10.1038/s41586-018-0618-9
Z. Zheng et al. , A mid-infrared biaxial hyperbolic van der Waals crystal . Sci. Adv. 5 , eaav8690 ( 2019 ). http://doi.org/10.1126/sciadv.aav8690 http://doi.org/10.1126/sciadv.aav8690
Y. Wu et al. , Manipulating polaritons at the extreme scale in van der Waals materials . Nat. Rev. Phys. 4 , 578 - 594 ( 2022 ). http://doi.org/10.1038/s42254-022-00472-0 http://doi.org/10.1038/s42254-022-00472-0
C. In , U.J. Kim , H. Choi , Two-dimensional Dirac plasmon-polaritons in graphene, 3D topological insulator and hybrid systems . Light Sci. Appl. 11 , 313 ( 2022 ). http://doi.org/10.1038/s41377-022-01012-2 http://doi.org/10.1038/s41377-022-01012-2
Y. Qu et al. , Tunable planar focusing based on hyperbolic phonon polaritons in <math id="IEq120_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 . Adv. Mater. 34 , 2105590 ( 2022 ). http://doi.org/10.1002/adma.202105590 http://doi.org/10.1002/adma.202105590
X. Guo et al. , Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes . Nat. Nanotechnol. 18 , 529 - 534 ( 2023 ). http://doi.org/10.1038/s41565-023-01324-3 http://doi.org/10.1038/s41565-023-01324-3
G. Hu et al. , Topological polaritons and photonic magic angles in twisted <math id="IEq122_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 bilayers . Nature 582 , 209 - 213 ( 2020 ). http://doi.org/10.1038/s41586-020-2359-9 http://doi.org/10.1038/s41586-020-2359-9
Q. Zhang et al. , Hybridized hyperbolic surface phonon polaritons at <math id="IEq124_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 and polar dielectric interfaces . Nano Lett. 21 , 3112 - 3119 ( 2021 ). http://doi.org/10.1021/acs.nanolett.1c00281 http://doi.org/10.1021/acs.nanolett.1c00281
W. Ma et al. , Ghost hyperbolic surface polaritons in bulk anisotropic crystals . Nature 596 , 362 - 366 ( 2021 ). http://doi.org/10.1038/s41586-021-03755-1 http://doi.org/10.1038/s41586-021-03755-1
Q. Zhang et al. , Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals . Sci. Adv. 8 , eabn9774 ( 2022 ). http://doi.org/10.1126/sciadv.abn9774 http://doi.org/10.1126/sciadv.abn9774
X. Guo et al. , Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals . Nat. Commun. 14 , 2532 ( 2023 ). http://doi.org/10.1038/s41467-023-37923-w http://doi.org/10.1038/s41467-023-37923-w
G. Hu et al. , Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal . Nat. Nanotechnol. 18 , 64 - 70 ( 2023 ). http://doi.org/10.1038/s41565-022-01264-4 http://doi.org/10.1038/s41565-022-01264-4
H. Lee et al. , All-optical control of high-purity trions in nanoscale waveguide . Nat. Commun. 14 , 1891 ( 2023 ). http://doi.org/10.1038/s41467-023-37481-1 http://doi.org/10.1038/s41467-023-37481-1
D. Timmer et al. , Plasmon mediated coherent population oscillations in molecular aggregates . Nat. Commun. 14 , 8035 ( 2023 ). http://doi.org/10.1038/s41467-023-43578-4 http://doi.org/10.1038/s41467-023-43578-4
Z. Zhou et al. , Gate-tuning hybrid polaritons in twisted <math id="IEq126_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 /graphene heterostructures . Nano Lett. 23 , 11252 - 11259 ( 2023 ). http://doi.org/10.1021/acs.nanolett.3c03769 http://doi.org/10.1021/acs.nanolett.3c03769
S. Sunku et al. , Photonic crystals for nano-light in moiré graphene superlattices . Science 362 , 1153 - 1156 ( 2018 ). http://doi.org/10.1126/science.aau5144 http://doi.org/10.1126/science.aau5144
G. Hu , A. Krasnok , Y. Mazor , C.-W. Qiu , A. Alù , Moiré hyperbolic metasurfaces . Nano Lett. 20 , 3217 - 3224 ( 2020 ). http://doi.org/10.1021/acs.nanolett.9b05319 http://doi.org/10.1021/acs.nanolett.9b05319
N.P. Wilson , W. Yao , J. Shan , X. Xu , Excitons and emergent quantum phenomena in stacked 2D semiconductors . Nature 599 , 383 - 392 ( 2021 ). http://doi.org/10.1038/s41586-021-03979-1 http://doi.org/10.1038/s41586-021-03979-1
L. Du et al. , Moiré photonics and optoelectronics . Science 379 , eadg0014 ( 2023 ). http://doi.org/10.1126/science.adg0014 http://doi.org/10.1126/science.adg0014
Y. Jiang , S. Chen , W. Zheng , B. Zheng , A. Pan , Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures . Light Sci. Appl. 10 , 72 ( 2021 ). http://doi.org/10.1038/s41377-021-00500-1 http://doi.org/10.1038/s41377-021-00500-1
Y. Xu et al. , Correlated insulating states at fractional fillings of moiré superlattices . Nature 587 , 214 - 218 ( 2020 ). http://doi.org/10.1038/s41586-020-2868-6 http://doi.org/10.1038/s41586-020-2868-6
Y. Cao et al. , Correlated insulator behaviour at half-filling in magic-angle graphene superlattices . Nature 556 , 80 - 84 ( 2018 ). http://doi.org/10.1038/nature26154 http://doi.org/10.1038/nature26154
Y. Cao et al. , Unconventional superconductivity in magic-angle graphene superlattices . Nature 556 , 43 - 50 ( 2018 ). http://doi.org/10.1038/nature26160 http://doi.org/10.1038/nature26160
K.L. Seyler et al. , Signatures of moiré-trapped valley excitons in MoSe 2 /WSe 2 heterobilayers . Nature 567 , 66 - 70 ( 2019 ). http://doi.org/10.1038/s41586-019-0957-1 http://doi.org/10.1038/s41586-019-0957-1
C. Jin et al. , Observation of moiré excitons in WSe 2 /WS 2 heterostructure superlattices . Nature 567 , 76 - 80 ( 2019 ). http://doi.org/10.1038/s41586-019-0976-y http://doi.org/10.1038/s41586-019-0976-y
K. Tran et al. , Evidence for moiré excitons in van der Waals heterostructures . Nature 567 , 71 - 75 ( 2019 ). http://doi.org/10.1038/s41586-019-0975-z http://doi.org/10.1038/s41586-019-0975-z
E.M. Alexeev et al. , Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures . Nature 567 , 81 - 86 ( 2019 ). http://doi.org/10.1038/s41586-019-0986-9 http://doi.org/10.1038/s41586-019-0986-9
G. Chen et al. , Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice . Nature 579 , 56 - 61 ( 2020 ). http://doi.org/10.1038/s41586-020-2049-7 http://doi.org/10.1038/s41586-020-2049-7
Y. Jiang et al. , Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene . Nature 573 , 91 - 95 ( 2019 ). http://doi.org/10.1038/s41586-019-1460-4 http://doi.org/10.1038/s41586-019-1460-4
R. Ribeiro-Palau et al. , Twistable electronics with dynamically rotatable heterostructures . Science 361 , 690 - 693 ( 2018 ). http://doi.org/10.1126/science.aat6981 http://doi.org/10.1126/science.aat6981
P. Roushan et al. , Topological surface states protected from backscattering by chiral spin texture . Nature 460 , 1106 - 1109 ( 2009 ). http://doi.org/10.1038/nature08308 http://doi.org/10.1038/nature08308
H. Beidenkopf et al. , Spatial fluctuations of helical Dirac fermions on the surface of topological insulators . Nat. Phys. 7 , 939 - 943 ( 2011 ). http://doi.org/10.1038/nphys2108 http://doi.org/10.1038/nphys2108
A. Soumyanarayanan , N. Reyren , A. Fert , C. Panagopoulos , Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces . Nature 539 , 509 - 517 ( 2016 ). http://doi.org/10.1038/nature19820 http://doi.org/10.1038/nature19820
Y. Xia et al. , Observation of a large-gap topological-insulator class with a single Dirac cone on the surface . Nat. Phys. 5 , 398 - 402 ( 2009 ). http://doi.org/10.1038/nphys1274 http://doi.org/10.1038/nphys1274
J.E. Moore , The birth of topological insulators . Nature 464 , 194 - 198 ( 2010 ). http://doi.org/10.1038/nature08916 http://doi.org/10.1038/nature08916
D.J. Rizzo et al. , Topological band engineering of graphene nanoribbons . Nature 560 , 204 - 208 ( 2018 ). http://doi.org/10.1038/s41586-018-0376-8 http://doi.org/10.1038/s41586-018-0376-8
S. Guddala et al. , Topological phonon-polariton funneling in midinfrared metasurfaces . Science 374 , 225 - 227 ( 2021 ). http://doi.org/10.1126/science.abj5488 http://doi.org/10.1126/science.abj5488
M. Li et al. , Topologically reconfigurable magnetic polaritons . Sci. Adv. 8 , eadd6660 ( 2022 ). http://doi.org/10.1126/sciadv.add6660 http://doi.org/10.1126/sciadv.add6660
M. Wang et al. , Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges . Elight 2 , 12 ( 2022 ). http://doi.org/10.1186/s43593-022-00018-y http://doi.org/10.1186/s43593-022-00018-y
L. Orsini et al. , Deep subwavelength topological edge state in a hyperbolic medium . Nat. Nanotechnol. 19 , 1 - 6 ( 2024 ). http://doi.org/10.1038/s41565-024-01737-8 http://doi.org/10.1038/s41565-024-01737-8
E. Abbe , Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung . Archiv für mikroskopische Anatomie 9 , 413 - 468 ( 1873 ). http://doi.org/10.1007/BF02956173 http://doi.org/10.1007/BF02956173
S.W. Hell , Far-field optical nanoscopy . Science 316 , 1153 - 1158 ( 2007 ). http://doi.org/10.1126/science.1137395 http://doi.org/10.1126/science.1137395
G. Binnig , C.F. Quate , C. Gerber , Atomic force microscope . Phys. Rev. Lett. 56 , 930 ( 1986 ). http://doi.org/10.1103/PhysRevLett.56.930 http://doi.org/10.1103/PhysRevLett.56.930
G. Binnig , H. Rohrer , C. Gerber , E. Weibel , Surface studies by scanning tunneling microscopy . Phys. Rev. Lett. 49 , 57 ( 1982 ). http://doi.org/10.1103/PhysRevLett.49.57 http://doi.org/10.1103/PhysRevLett.49.57
G. Binnig , H. Rohrer , C. Gerber , E. Weibel , Tunneling through a controllable vacuum gap . Appl. Phys. Lett. 40 , 178 - 180 ( 1982 ). http://doi.org/10.1063/1.92999 http://doi.org/10.1063/1.92999
E. Synge , Xxxviii. A suggested method for extending microscopic resolution into the ultra-microscopic region . London Edinburgh Dublin Philos. Mag. J. Sci. 6 , 356 - 362 ( 1928 ). http://doi.org/10.1080/14786440808564615 http://doi.org/10.1080/14786440808564615
J.A. O’Keefe , Resolving power of visible light . JOSA 46 , 359 ( 1956 ). http://doi.org/10.1364/JOSA.46.000359 http://doi.org/10.1364/JOSA.46.000359
E. Ash , G. Nicholls , Super-resolution aperture scanning microscope . Nature 237 , 510 - 512 ( 1972 ). http://doi.org/10.1038/237510a0 http://doi.org/10.1038/237510a0
R.M. Stöckle , Y.D. Suh , V. Deckert , R. Zenobi , Nanoscale chemical analysis by tip-enhanced Raman spectroscopy . Chem. Phys. Lett. 318 , 131 - 136 ( 2000 ). http://doi.org/10.1016/S0009-2614(99)01451-7 http://doi.org/10.1016/S0009-2614(99)01451-7
N. Hayazawa , Y. Inouye , Z. Sekkat , S. Kawata , Metallized tip amplification of near-field Raman scattering . Opt. Commun. 183 , 333 - 336 ( 2000 ). http://doi.org/10.1016/S0030-4018(00)00894-4 http://doi.org/10.1016/S0030-4018(00)00894-4
Y. Koo et al. , Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials . Light Sci. Appl. 13 , 30 ( 2024 ). http://doi.org/10.1038/s41377-024-01380-x http://doi.org/10.1038/s41377-024-01380-x
D.Y. Lee et al. , Adaptive tip-enhanced nano-spectroscopy . Nat. Commun. 12 , 3465 ( 2021 ). http://doi.org/10.1038/s41467-021-23818-1 http://doi.org/10.1038/s41467-021-23818-1
A.C. Gadelha et al. , Localization of lattice dynamics in low-angle twisted bilayer graphene . Nature 590 , 405 - 409 ( 2021 ). http://doi.org/10.1038/s41586-021-03252-5 http://doi.org/10.1038/s41586-021-03252-5
M. Kang et al. , Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature . Nat. Commun. 13 , 4133 ( 2022 ). http://doi.org/10.1038/s41467-022-31576-x http://doi.org/10.1038/s41467-022-31576-x
M. Brehm , T. Taubner , R. Hillenbrand , F. Keilmann , Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution . Nano Lett. 6 , 1307 - 1310 ( 2006 ). http://doi.org/10.1021/nl0610836 http://doi.org/10.1021/nl0610836
A. Dazzi , R. Prazeres , F. Glotin , J. Ortega , Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor . Opt. Lett. 30 , 2388 - 2390 ( 2005 ). http://doi.org/10.1364/OL.30.002388 http://doi.org/10.1364/OL.30.002388
H. Wang , L. Wang , D.S. Jakob , X.G. Xu , Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode . Nat. Commun. 9 , 2005 ( 2018 ). http://doi.org/10.1038/s41467-018-04403-5 http://doi.org/10.1038/s41467-018-04403-5
Q. Xie , X.G. Xu , Fourier-transform atomic force microscope-based photothermal infrared spectroscopy with broadband source . Nano Lett. 22 , 9174 - 9180 ( 2022 ). http://doi.org/10.1021/acs.nanolett.2c04097 http://doi.org/10.1021/acs.nanolett.2c04097
Q. Xie , Y. Zhang , E. Janzen , J.H. Edgar , X.G. Xu , Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy . Nat. Nanotechnol. 19 , 1108 - 1115 ( 2024 ). http://doi.org/10.1038/s41565-024-01670-w http://doi.org/10.1038/s41565-024-01670-w
H.A. Bechtel , E.A. Muller , R.L. Olmon , M.C. Martin , M.B. Raschke , Ultrabroadband infrared nanospectroscopic imaging . Proc. Natl. Acad. Sci. 111 , 7191 - 7196 ( 2014 ). http://doi.org/10.1073/pnas.1400502111 http://doi.org/10.1073/pnas.1400502111
O. Khatib , H.A. Bechtel , M.C. Martin , M.B. Raschke , G.L. Carr , Far infrared synchrotron near-field nanoimaging and nanospectroscopy . ACS Photonics 5 , 2773 - 2779 ( 2018 ). http://doi.org/10.1021/acsphotonics.8b00565 http://doi.org/10.1021/acsphotonics.8b00565
I.D. Barcelos et al. , Probing polaritons in 2D materials with synchrotron infrared nanospectroscopy . Adv. Opt. Mater. 8 , 1901091 ( 2020 ). http://doi.org/10.1002/adom.201901091 http://doi.org/10.1002/adom.201901091
R. Hamers , D.G. Cahill , Ultrafast time resolution in scanned probe microscopies . Appl. Phys. Lett. 57 , 2031 - 2033 ( 1990 ). http://doi.org/10.1063/1.103997 http://doi.org/10.1063/1.103997
R. Ulbricht , E. Hendry , J. Shan , T.F. Heinz , M. Bonn , Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy . Rev. Mod. Phys. 83 , 543 - 586 ( 2011 ). http://doi.org/10.1103/RevModPhys.83.543 http://doi.org/10.1103/RevModPhys.83.543
M. Tang , Y. Han , D. Jia , Q. Yang , J.-X. Cheng , Far-field super-resolution chemical microscopy . Light Sci. Appl. 12 , 137 ( 2023 ). http://doi.org/10.1038/s41377-023-01182-7 http://doi.org/10.1038/s41377-023-01182-7
Z. Schumacher , A. Spielhofer , Y. Miyahara , P. Grutter , The limit of time resolution in frequency modulation atomic force microscopy by a pump-probe approach . Appl. Phys. Lett. 110 ,( 2017 ). http://doi.org/10.1063/1.4975629 http://doi.org/10.1063/1.4975629
S.A. Donges et al. , Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO 2 . Nano Lett. 16 , 3029 - 3035 ( 2016 ). http://doi.org/10.1021/acs.nanolett.5b05313 http://doi.org/10.1021/acs.nanolett.5b05313
L. Novotny , B. Hecht , Principles of Nano-optics ( Cambridge University Press , 2012 ). http://doi.org/10.1017/CBO9780511794193 http://doi.org/10.1017/CBO9780511794193
G. Ni et al. , Fundamental limits to graphene plasmonics . Nature 557 , 530 - 533 ( 2018 ). http://doi.org/10.1038/s41586-018-0136-9 http://doi.org/10.1038/s41586-018-0136-9
G. Ni et al. , Long-lived phonon polaritons in hyperbolic materials . Nano Lett. 21 , 5767 - 5773 ( 2021 ). http://doi.org/10.1021/acs.nanolett.1c01562 http://doi.org/10.1021/acs.nanolett.1c01562
Y. Zhou et al. , Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO 3 /SrTiO 3 heterostructures . Nat. Commun. 14 , 7686 ( 2023 ). http://doi.org/10.1038/s41467-023-43464-z http://doi.org/10.1038/s41467-023-43464-z
A. Anderson , K.S. Deryckx , X.G. Xu , G. Steinmeyer , M.B. Raschke , Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating . Nano Lett. 10 , 2519 - 2524 ( 2010 ). http://doi.org/10.1021/nl101090s http://doi.org/10.1021/nl101090s
S. Berweger , J.M. Atkin , X.G. Xu , R.L. Olmon , M.B. Raschke , Femtosecond nanofocusing with full optical waveform control . Nano Lett. 11 , 4309 - 4313 ( 2011 ). http://doi.org/10.1021/nl2023299 http://doi.org/10.1021/nl2023299
W. Luo et al. , Ultrafast nanoimaging of electronic coherence of monolayer WSe 2 . Nano Lett. 23 , 1767 - 1773 ( 2023 ). http://doi.org/10.1021/acs.nanolett.2c04536 http://doi.org/10.1021/acs.nanolett.2c04536
V. Kravtsov , R. Ulbricht , J.M. Atkin , M.B. Raschke , Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging . Nat. Nanotechnol. 11 , 459 - 464 ( 2016 ). http://doi.org/10.1038/nnano.2015.336 http://doi.org/10.1038/nnano.2015.336
T. Jiang , V. Kravtsov , M. Tokman , A. Belyanin , M.B. Raschke , Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene . Nat. Nanotechnol. 14 , 838 - 843 ( 2019 ). http://doi.org/10.1038/s41565-019-0515-x http://doi.org/10.1038/s41565-019-0515-x
K. Tomita , Y. Kojima , F. Kannari , Selective coherent anti-stokes Raman scattering microscopy employing dual-wavelength nanofocused ultrafast plasmon pulses . Nano Lett. 18 , 1366 - 1372 ( 2018 ). http://doi.org/10.1021/acs.nanolett.7b05078 http://doi.org/10.1021/acs.nanolett.7b05078
M. Wagner et al. , Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy . Nano Lett. 14 , 894 - 900 ( 2014 ). http://doi.org/10.1021/nl4042577 http://doi.org/10.1021/nl4042577
E. Yoxall et al. , Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity . Nat. Photonics 9 , 674 - 678 ( 2015 ). http://doi.org/10.1038/nphoton.2015.166 http://doi.org/10.1038/nphoton.2015.166
G. Ni et al. , Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene . Nat. Photonics 10 , 244 - 247 ( 2016 ). http://doi.org/10.1038/nphoton.2016.45 http://doi.org/10.1038/nphoton.2016.45
M. Mrejen , L. Yadgarov , A. Levanon , H. Suchowski , Transient exciton-polariton dynamics in WSe 2 by ultrafast near-field imaging . Sci. Adv. 5 , eaat9618 ( 2019 ). http://doi.org/10.1126/sciadv.aat9618 http://doi.org/10.1126/sciadv.aat9618
A.J. Sternbach et al. , Femtosecond exciton dynamics in WSe 2 optical waveguides . Nat. Commun. 11 , 3567 ( 2020 ). http://doi.org/10.1038/s41467-020-17335-w http://doi.org/10.1038/s41467-020-17335-w
M.A. Huber et al. , Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures . Nat. Nanotechnol. 12 , 207 - 211 ( 2017 ). http://doi.org/10.1038/nnano.2016.261 http://doi.org/10.1038/nnano.2016.261
R. Fu et al. , Manipulating hyperbolic transient plasmons in a layered semiconductor . Nat. Commun. 15 , 709 ( 2024 ). http://doi.org/10.1038/s41467-024-44971-3 http://doi.org/10.1038/s41467-024-44971-3
A. Sternbach et al. , Programmable hyperbolic polaritons in van der Waals semiconductors . Science 371 , 617 - 620 ( 2021 ). http://doi.org/10.1126/science.abe9163 http://doi.org/10.1126/science.abe9163
X. Zhang et al. , Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation . Sci. Adv. 9 , eadi4407 ( 2023 ). http://doi.org/10.1126/sciadv.adi4407 http://doi.org/10.1126/sciadv.adi4407
J. Nishida , A.H. Alfaifi , T.P. Gray , S.E. Shaheen , M.B. Raschke , Heterogeneous cation-lattice interaction and dynamics in triple-cation perovskites revealed by infrared vibrational nanoscopy . ACS Energy Lett. 5 , 1636 - 1643 ( 2020 ). http://doi.org/10.1021/acsenergylett.0c00522 http://doi.org/10.1021/acsenergylett.0c00522
J. Nishida et al. , Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites . Nat. Commun. 13 , 6582 ( 2022 ). http://doi.org/10.1038/s41467-022-33935-0 http://doi.org/10.1038/s41467-022-33935-0
J. Nishida et al. , Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics . Nat. Commun. 13 , 1083 ( 2022 ). http://doi.org/10.1038/s41467-022-28224-9 http://doi.org/10.1038/s41467-022-28224-9
J.M. Atkin , S. Berweger , A.C. Jones , M.B. Raschke , Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids . Adv. Phys. 61 , 745 - 842 ( 2012 ). http://doi.org/10.1080/00018732.2012.737982 http://doi.org/10.1080/00018732.2012.737982
B.T. O’Callahan et al. , Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO 2 . Nat. Commun. 6 , 6849 ( 2015 ). http://doi.org/10.1038/ncomms7849 http://doi.org/10.1038/ncomms7849
A.J. Sternbach et al. , Nanotextured dynamics of a light-induced phase transition in VO 2 . Nano Lett. 21 , 9052 - 9060 ( 2021 ). http://doi.org/10.1021/acs.nanolett.1c02638 http://doi.org/10.1021/acs.nanolett.1c02638
M. Xue et al. , Observation and ultrafast dynamics of inter-sub-band transition in InAs twinning superlattice nanowires . Adv. Mater. 32 , 2004120 ( 2020 ). http://doi.org/10.1002/adma.202004120 http://doi.org/10.1002/adma.202004120
M. Xue , D. Pan , J. Zhao , J. Chen , Optically tunable transient plasmons in InSb nanowires . Adv. Mater. 35 , 2208952 ( 2023 ). http://doi.org/10.1002/adma.202208952 http://doi.org/10.1002/adma.202208952
J. Li et al. , Ultrafast optical nanoscopy of carrier dynamics in silicon nanowires . Nano Lett. 23 , 1445 - 1450 ( 2023 ). http://doi.org/10.1021/acs.nanolett.2c04790 http://doi.org/10.1021/acs.nanolett.2c04790
S. Wang et al. , Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes . Nat. Mater. 19 , 986 - 991 ( 2020 ). http://doi.org/10.1038/s41563-020-0652-5 http://doi.org/10.1038/s41563-020-0652-5
R. Hillenbrand , F. Keilmann , Complex optical constants on a subwavelength scale . Phys. Rev. Lett. 85 , 3029 ( 2000 ). http://doi.org/10.1103/PhysRevLett.85.3029 http://doi.org/10.1103/PhysRevLett.85.3029
N. Ocelic , A. Huber , R. Hillenbrand , Pseudoheterodyne detection for background-free near-field spectroscopy . Appl. Phys. Lett. 89 ,( 2006 ). http://doi.org/10.1063/1.2348781 http://doi.org/10.1063/1.2348781
K. Moon et al. , Subsurface nanoimaging by broadband terahertz pulse near-field microscopy . Nano Lett. 15 , 549 - 552 ( 2015 ). http://doi.org/10.1021/nl503998v http://doi.org/10.1021/nl503998v
J. Zhang et al. , Terahertz nanoimaging of graphene . ACS Photonics 5 , 2645 - 2651 ( 2018 ). http://doi.org/10.1021/acsphotonics.8b00190 http://doi.org/10.1021/acsphotonics.8b00190
R. Jing et al. , Phase-resolved terahertz nanoimaging of WTe 2 microcrystals . Phys. Rev. B 107 ,( 2023 ). http://doi.org/10.1103/PhysRevB.107.155413 http://doi.org/10.1103/PhysRevB.107.155413
A. Sternbach et al. , Inhomogeneous photosusceptibility of VO 2 films at the nanoscale . Phys. Rev. Lett. 132 ,( 2024 ). http://doi.org/10.1103/PhysRevLett.132.186903 http://doi.org/10.1103/PhysRevLett.132.186903
M.A. Huber et al. , Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams . Nano Lett. 16 , 1421 - 1427 ( 2016 ). http://doi.org/10.1021/acs.nanolett.5b04988 http://doi.org/10.1021/acs.nanolett.5b04988
M. Plankl et al. , Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures . Nat. Photonics 15 , 594 - 600 ( 2021 ). http://doi.org/10.1038/s41566-021-00813-y http://doi.org/10.1038/s41566-021-00813-y
T. Siday et al. , Ultrafast nanoscopy of high-density exciton phases in WSe 2 . Nano Lett. 22 , 2561 - 2568 ( 2022 ). http://doi.org/10.1021/acs.nanolett.1c04741 http://doi.org/10.1021/acs.nanolett.1c04741
E.Y. Ma et al. , Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission . Sci. Adv. 5 , eaau0073 ( 2019 ). http://doi.org/10.1126/sciadv.aau0073 http://doi.org/10.1126/sciadv.aau0073
Z. Fei et al. , Gate-tuning of graphene plasmons revealed by infrared nano-imaging . Nature 487 , 82 - 85 ( 2012 ). http://doi.org/10.1038/nature11253 http://doi.org/10.1038/nature11253
J. Chen et al. , Optical nano-imaging of gate-tunable graphene plasmons . Nature 487 , 77 - 81 ( 2012 ). http://doi.org/10.1038/nature11254 http://doi.org/10.1038/nature11254
H. Hu et al. , Doping-driven topological polaritons in graphene/ <math id="IEq129_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 heterostructures . Nat. Nanotechnol. 17 , 940 - 946 ( 2022 ). http://doi.org/10.1038/s41565-022-01185-2 http://doi.org/10.1038/s41565-022-01185-2
F.L. Ruta et al. , Surface plasmons induce topological transition in graphene/ <math id="IEq131_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 heterostructures . Nat. Commun. 13 , 3719 ( 2022 ). http://doi.org/10.1038/s41467-022-31477-z http://doi.org/10.1038/s41467-022-31477-z
H. Hu et al. , Gate-tunable negative refraction of mid-infrared polaritons . Science 379 , 558 - 561 ( 2023 ). http://doi.org/10.1126/science.adf1251 http://doi.org/10.1126/science.adf1251
T. Zhang et al. , Spatiotemporal beating and vortices of van der Waals hyperbolic polaritons . Proc. Natl. Acad. Sci. 121 ,( 2024 ). http://doi.org/10.1073/pnas.2319465121 http://doi.org/10.1073/pnas.2319465121
F. Guan et al. , Compensating losses in polariton propagation with synthesized complex frequency excitation . Nat. Mater. 23 , 506 - 511 ( 2024 ). http://doi.org/10.1038/s41563-023-01787-8 http://doi.org/10.1038/s41563-023-01787-8
F. Guan et al. , Overcoming losses in superlenses with synthetic waves of complex frequency . Science 381 , 766 - 771 ( 2023 ). http://doi.org/10.1126/science.adi1267 http://doi.org/10.1126/science.adi1267
K. Zeng et al. , Synthesized complex-frequency excitation for ultrasensitive molecular sensing . eLight 4 , 1 ( 2024 ). http://doi.org/10.1186/s43593-023-00058-y http://doi.org/10.1186/s43593-023-00058-y
J. Duan et al. , Multiple and spectrally robust photonic magic angles in reconfigurable <math id="IEq132_Math"> <mi>α</mi> </math> $$$\alpha$$$ -MoO 3 trilayers . Nat. Mater. 22 , 867 - 872 ( 2023 ). http://doi.org/10.1038/s41563-023-01582-5 http://doi.org/10.1038/s41563-023-01582-5
A.J. Sternbach et al. , Artifact free time resolved near-field spectroscopy . Opt. Expr. 25 , 28589 - 28611 ( 2017 ). http://doi.org/10.1364/OE.25.028589 http://doi.org/10.1364/OE.25.028589
M. Wagner et al. , Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy . Nano Lett. 14 , 4529 - 4534 ( 2014 ). http://doi.org/10.1021/nl501558t http://doi.org/10.1021/nl501558t
A. Charnukha et al. , Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor . Sci. Adv. 5 , eaau9956 ( 2019 ). http://doi.org/10.1126/sciadv.aau9956 http://doi.org/10.1126/sciadv.aau9956
M. Eisele et al. , Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution . Nat. Photonics 8 , 841 - 845 ( 2014 ). http://doi.org/10.1038/nphoton.2014.225 http://doi.org/10.1038/nphoton.2014.225
M. Zizlsperger et al. , In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites . Nat. Photonics 18 , 975 - 981 ( 2024 ). http://doi.org/10.1038/s41566-024-01476-1 http://doi.org/10.1038/s41566-024-01476-1
A.J. Babadjanyan , N.L. Margaryan , K.V. Nerkararyan , Superfocusing of surface polaritons in the conical structure . J. Appl. Phys. 87 , 3785 - 3788 ( 2000 ). http://doi.org/10.1063/1.372414 http://doi.org/10.1063/1.372414
M.I. Stockman , Nanofocusing of optical energy in tapered plasmonic waveguides . Phys. Rev. Lett. 93 ,( 2004 ). http://doi.org/10.1103/PhysRevLett.93.137404 http://doi.org/10.1103/PhysRevLett.93.137404
L. Long , Q. Deng , R. Huang , J. Li , Z.-Y. Li , 3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging . Light Sci. Appl. 12 , 219 ( 2023 ). http://doi.org/10.1038/s41377-023-01272-6 http://doi.org/10.1038/s41377-023-01272-6
V. Kravtsov , J.M. Atkin , M.B. Raschke , Group delay and dispersion in adiabatic plasmonic nanofocusing . Opt. Lett. 38 , 1322 - 1324 ( 2013 ). http://doi.org/10.1364/OL.38.001322 http://doi.org/10.1364/OL.38.001322
S. Berweger , J.M. Atkin , R.L. Olmon , M.B. Raschke , Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale . J. Phys. Chem. Lett. 3 , 945 - 952 ( 2012 ). http://doi.org/10.1021/jz2016268 http://doi.org/10.1021/jz2016268
C. Ropers et al. , Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source . Nano Lett. 7 , 2784 - 2788 ( 2007 ). http://doi.org/10.1021/nl071340m http://doi.org/10.1021/nl071340m
S. Schmidt et al. , Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution . ACS Nano 6 , 6040 - 6048 ( 2012 ). http://doi.org/10.1021/nn301121h http://doi.org/10.1021/nn301121h
K. Toma , Y. Masaki , M. Kusaba , K. Hirosawa , F. Kannari , Control of grating coupled ultrafast surface plasmon pulse and its nonlinear emission by shaping femtosecond laser pulse . J. Appl. Phys. 118 , 103102 ( 2015 ). http://doi.org/10.1063/1.4930046 http://doi.org/10.1063/1.4930046
C. Neacsu , G. Reider , M. Raschke , Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures . Phys. Rev. B 71 ,( 2005 ). http://doi.org/10.1103/PhysRevB.71.201402 http://doi.org/10.1103/PhysRevB.71.201402
C.C. Neacsu et al. , Near-field localization in plasmonic superfocusing: a nanoemitter on a tip . Nano Lett. 10 , 592 - 596 ( 2010 ). http://doi.org/10.1021/nl903574a http://doi.org/10.1021/nl903574a
D. Sadiq et al. , Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles . Nano Lett. 11 , 1609 - 1613 ( 2011 ). http://doi.org/10.1021/nl1045457 http://doi.org/10.1021/nl1045457
S.F. Becker et al. , Gap-plasmon-enhanced nanofocusing near-field microscopy . ACS Photonics 3 , 223 - 232 ( 2016 ). http://doi.org/10.1021/acsphotonics.5b00438 http://doi.org/10.1021/acsphotonics.5b00438
F. De Angelis et al. , Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons . Nat. Nanotechnol. 5 , 67 - 72 ( 2010 ). http://doi.org/10.1038/nnano.2009.348 http://doi.org/10.1038/nnano.2009.348
S. Berweger , J.M. Atkin , R.L. Olmon , M.B. Raschke , Adiabatic tip-plasmon focusing for nano-Raman spectroscopy . J. Phys. Chem. Lett. 1 , 3427 - 3432 ( 2010 ). http://doi.org/10.1021/jz101289z http://doi.org/10.1021/jz101289z
A. Giugni et al. , Hot-electron nanoscopy using adiabatic compression of surface plasmons . Nat. Nanotechnol. 8 , 845 - 852 ( 2013 ). http://doi.org/10.1038/nnano.2013.207 http://doi.org/10.1038/nnano.2013.207
M. Esmann et al. , Vectorial near-field coupling . Nat. Nanotechnol. 14 , 698 - 704 ( 2019 ). http://doi.org/10.1038/s41565-019-0441-y http://doi.org/10.1038/s41565-019-0441-y
T. Umakoshi , M. Tanaka , Y. Saito , P. Verma , White nanolight source for optical nanoimaging . Sci. Adv. 6 , eaba4179 ( 2020 ). http://doi.org/10.1126/sciadv.aba4179 http://doi.org/10.1126/sciadv.aba4179
J. Vogelsang et al. , Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons . Nano Lett. 15 , 4685 - 4691 ( 2015 ). http://doi.org/10.1021/acs.nanolett.5b01513 http://doi.org/10.1021/acs.nanolett.5b01513
M. Müller , V. Kravtsov , A. Paarmann , M.B. Raschke , R. Ernstorfer , Nanofocused plasmon-driven sub-10 fs electron point source . ACS Photonics 3 , 611 - 619 ( 2016 ). http://doi.org/10.1021/acsphotonics.5b00710 http://doi.org/10.1021/acsphotonics.5b00710
M. Esmann et al. , Plasmonic nanofocusing spectral interferometry . Nanophotonics 9 , 491 - 508 ( 2020 ). http://doi.org/10.1515/nanoph-2019-0397 http://doi.org/10.1515/nanoph-2019-0397
K. Tomita , T. Matsuda , F. Kannari , Reduction of graphene oxide by nanofocused ultrafast surface plasmon pulses . OSA Continuum 3 , 2441 - 2452 ( 2020 ). http://doi.org/10.1364/OSAC.395376 http://doi.org/10.1364/OSAC.395376
V. Kravtsov et al. , Enhanced third-order optical nonlinearity driven by surface-plasmon field gradients . Phys. Rev. Lett. 120 ,( 2018 ). http://doi.org/10.1103/PhysRevLett.120.203903 http://doi.org/10.1103/PhysRevLett.120.203903
M.A. May et al. , Nanocavity clock spectroscopy: resolving competing exciton dynamics in WSe 2 /MoSe 2 heterobilayers . Nano Lett. 21 , 522 - 528 ( 2020 ). http://doi.org/10.1021/acs.nanolett.0c03979 http://doi.org/10.1021/acs.nanolett.0c03979
W. Luo et al. , Nonlinear nano-imaging of interlayer coupling in 2D graphene-semiconductor heterostructures . Small 20 , 2307345 ( 2024 ). http://doi.org/10.1002/smll.202307345 http://doi.org/10.1002/smll.202307345
E. Quinonez , J. Handali , B. Barwick , Femtosecond photoelectron point projection microscope . Rev. Sci. Instrum. 84 ,( 2013 ). http://doi.org/10.1063/1.4827035 http://doi.org/10.1063/1.4827035
M. Müller , A. Paarmann , R. Ernstorfer , Femtosecond electrons probing currents and atomic structure in nanomaterials . Nat. Commun. 5 , 5292 ( 2014 ). http://doi.org/10.1038/ncomms6292 http://doi.org/10.1038/ncomms6292
G. Hergert , R. Lampe , A. Wöste , C. Lienau , Ultra-nonlinear subcycle photoemission of few-electron states from sharp gold nanotapers . Nano Lett. 24 , 11067 - 11074 ( 2024 ). http://doi.org/10.1021/acs.nanolett.4c03240 http://doi.org/10.1021/acs.nanolett.4c03240
P. Dienstbier et al. , Tracing attosecond electron emission from a nanometric metal tip . Nature 616 , 702 - 706 ( 2023 ). http://doi.org/10.1038/s41586-023-05839-6 http://doi.org/10.1038/s41586-023-05839-6
B. Schroeder , M. Sivis , R. Bormann , S. Schaefer , C. Ropers , An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons . Appl. Phys. Lett. 107 ,( 2015 ). http://doi.org/10.1063/1.4937121 http://doi.org/10.1063/1.4937121
J. Vogelsang , G. Hergert , D. Wang , P. Groß , C. Lienau , Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy . Light Sci. Appl. 7 , 55 ( 2018 ). http://doi.org/10.1038/s41377-018-0054-5 http://doi.org/10.1038/s41377-018-0054-5
G. Hergert et al. , Probing transient localized electromagnetic fields using low-energy point-projection electron microscopy . ACS Photonics 8 , 2573 - 2580 ( 2021 ). http://doi.org/10.1021/acsphotonics.1c00775 http://doi.org/10.1021/acsphotonics.1c00775
A. Wöste et al. , Ultrafast coupling of optical near fields to low-energy electrons probed in a point-projection microscope . Nano Lett. 23 , 5528 - 5534 ( 2023 ). http://doi.org/10.1021/acs.nanolett.3c00738 http://doi.org/10.1021/acs.nanolett.3c00738
T.L. Cocker , D. Peller , P. Yu , J. Repp , R. Huber , Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging . Nature 539 , 263 - 267 ( 2016 ). http://doi.org/10.1038/nature19816 http://doi.org/10.1038/nature19816
L. Wang , Y. Xia , W. Ho , Atomic-scale quantum sensing based on the ultrafast coherence of an H 2 molecule in an stm cavity . Science 376 , 401 - 405 ( 2022 ). http://doi.org/10.1126/science.abn9220 http://doi.org/10.1126/science.abn9220
M. Garg et al. , Real-space subfemtosecond imaging of quantum electronic coherences in molecules . Nat. Photonics 16 , 196 - 202 ( 2022 ). http://doi.org/10.1038/s41566-021-00929-1 http://doi.org/10.1038/s41566-021-00929-1
L.V. Keldysh , Ionization in the field of a strong electromagnetic wave . J. Exp. Theor. Phys. 47 , 1945 - 1957 ( 1964 ).
M. Garg , K. Kern , Attosecond coherent manipulation of electrons in tunneling microscopy . Science 367 , 411 - 415 ( 2020 ). http://doi.org/10.1126/science.aaz1098 http://doi.org/10.1126/science.aaz1098
S. Grafström , Photoassisted scanning tunneling microscopy . J. Appl. Phys. 91 , 1717 - 1753 ( 2002 ). http://doi.org/10.1063/1.1432113 http://doi.org/10.1063/1.1432113
T.L. Cocker et al. , An ultrafast terahertz scanning tunnelling microscope . Nat. Photonics 7 , 620 - 625 ( 2013 ). http://doi.org/10.1038/nphoton.2013.151 http://doi.org/10.1038/nphoton.2013.151
K. Yoshioka et al. , Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields . Nat. Photonics 10 , 762 - 765 ( 2016 ). http://doi.org/10.1038/nphoton.2016.205 http://doi.org/10.1038/nphoton.2016.205
K. Yoshioka et al. , Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields . Nano Lett. 18 , 5198 - 5204 ( 2018 ). http://doi.org/10.1021/acs.nanolett.8b02161 http://doi.org/10.1021/acs.nanolett.8b02161
Y. Terada , S. Yoshida , O. Takeuchi , H. Shigekawa , Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy . Nat. Photonics 4 , 869 - 874 ( 2010 ). http://doi.org/10.1038/nphoton.2010.235 http://doi.org/10.1038/nphoton.2010.235
P. Kloth , M. Wenderoth , From time-resolved atomic-scale imaging of individual donors to their cooperative dynamics . Sci. Adv. 3 ,( 2017 ). http://doi.org/10.1126/sciadv.1601552 http://doi.org/10.1126/sciadv.1601552
C. Guo et al. , Probing nonequilibrium dynamics of photoexcited polarons on a metal-oxide surface with atomic precision . Phys. Rev. Lett. 124 ,( 2020 ). http://doi.org/10.1103/PhysRevLett.124.206801 http://doi.org/10.1103/PhysRevLett.124.206801
S. Yoshida et al. , Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations . ACS Photonics 8 , 315 - 323 ( 2021 ). http://doi.org/10.1021/acsphotonics.0c01572 http://doi.org/10.1021/acsphotonics.0c01572
V. Jelic et al. , Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface . Nat. Phys. 13 , 591 - 598 ( 2017 ). http://doi.org/10.1038/nphys4047 http://doi.org/10.1038/nphys4047
D. Peller et al. , Sub-cycle atomic-scale forces coherently control a single-molecule switch . Nature 585 , 58 - 62 ( 2020 ). http://doi.org/10.1038/s41586-020-2620-2 http://doi.org/10.1038/s41586-020-2620-2
Y. Arashida et al. , Subcycle mid-infrared electric-field-driven scanning tunneling microscopy with a time resolution higher than 30 fs . ACS Photonics 9 , 3156 - 3164 ( 2022 ). http://doi.org/10.1021/acsphotonics.2c00995 http://doi.org/10.1021/acsphotonics.2c00995
C. Roelcke et al. , Ultrafast atomic-scale scanning tunnelling spectroscopy of a single vacancy in a monolayer crystal . Nat. Photonics 18 , 595 - 602 ( 2024 ). http://doi.org/10.1038/s41566-024-01390-6 http://doi.org/10.1038/s41566-024-01390-6
S. Ammerman et al. , Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons . Nat. Commun. 12 , 6794 ( 2021 ). http://doi.org/10.1038/s41467-021-26656-3 http://doi.org/10.1038/s41467-021-26656-3
S. Sheng et al. , Terahertz spectroscopy of collective charge density wave dynamics at the atomic scale . Nat. Phys. 20 , 1 - 6 ( 2024 ). http://doi.org/10.1038/s41567-024-02552-7 http://doi.org/10.1038/s41567-024-02552-7
M. Müller , N. Martín Sabanés , T. Kampfrath , M. Wolf , Phase-resolved detection of ultrabroadband thz pulses inside a scanning tunneling microscope junction . ACS Photonics 7 , 2046 - 2055 ( 2020 ). http://doi.org/10.1021/acsphotonics.0c00386 http://doi.org/10.1021/acsphotonics.0c00386
K. Kimura et al. , Terahertz-field-driven scanning tunneling luminescence spectroscopy . ACS Photonics 8 , 982 - 987 ( 2021 ). http://doi.org/10.1021/acsphotonics.0c01755 http://doi.org/10.1021/acsphotonics.0c01755
D. Peller et al. , Quantitative sampling of atomic-scale electromagnetic waveforms . Nat. Photonics 15 , 143 - 147 ( 2021 ). http://doi.org/10.1038/s41566-020-00720-8 http://doi.org/10.1038/s41566-020-00720-8
V. Jelic et al. , Atomic-scale terahertz time-domain spectroscopy . Nat. Photonics 18 , 898 - 904 ( 2024 ). http://doi.org/10.1038/s41566-024-01467-2 http://doi.org/10.1038/s41566-024-01467-2
L. Wang , D. Bai , Y. Xia , W. Ho , Electrical manipulation of quantum coherence in a two-level molecular system . Phys. Rev. Lett. 130 ,( 2023 ). http://doi.org/10.1103/PhysRevLett.130.096201 http://doi.org/10.1103/PhysRevLett.130.096201
O. Takeuchi et al. , Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy . Appl. Phys. Lett. 85 , 3268 - 3270 ( 2004 ). http://doi.org/10.1063/1.1804238 http://doi.org/10.1063/1.1804238
H. Mogi et al. , Ultrafast nanoscale exciton dynamics via laser-combined scanning tunneling microscopy in atomically thin materials . NPJ 2D Mater Appl 6 , 72 ( 2022 ). http://doi.org/10.1038/s41699-022-00345-1 http://doi.org/10.1038/s41699-022-00345-1
K. Iwaya et al. , Externally-triggerable optical pump-probe scanning tunneling microscopy with a time resolution of tens-picosecond . Sci. Rep. 13 , 818 ( 2023 ). http://doi.org/10.1038/s41598-023-27383-z http://doi.org/10.1038/s41598-023-27383-z
S. Yoshida et al. , Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy . Nat. Nanotechnol. 9 , 588 - 593 ( 2014 ). http://doi.org/10.1038/nnano.2014.125 http://doi.org/10.1038/nnano.2014.125
J. Zhu , Ultrafast nano-movie of graphene . Nat. Nanotechnol. 18 , 1263 ( 2023 ). http://doi.org/10.1038/s41565-023-01554-5 http://doi.org/10.1038/s41565-023-01554-5
Y. Tian et al. , Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation . Nat. Photonics 11 , 242 - 246 ( 2017 ). http://doi.org/10.1038/nphoton.2017.16 http://doi.org/10.1038/nphoton.2017.16
R. Jing et al. , Terahertz response of monolayer and few-layer WTe 2 at the nanoscale . Nat. Commun. 12 , 5594 ( 2021 ). http://doi.org/10.1038/s41467-021-23933-z http://doi.org/10.1038/s41467-021-23933-z
R.H. Kim et al. , Terahertz nano-imaging of electronic strip heterogeneity in a Dirac semimetal . ACS Photonics 8 , 1873 - 1880 ( 2021 ). http://doi.org/10.1021/acsphotonics.1c00216 http://doi.org/10.1021/acsphotonics.1c00216
S. Chen et al. , Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons . Nat. Mater. 22 , 860 - 866 ( 2023 ). http://doi.org/10.1038/s41563-023-01547-8 http://doi.org/10.1038/s41563-023-01547-8
M. Obst et al. , Terahertz twistoptics-engineering canalized phonon polaritons . ACS Nano 17 , 19313 - 19322 ( 2023 ). http://doi.org/10.1021/acsnano.3c06477 http://doi.org/10.1021/acsnano.3c06477
S. Labouesse , S.C. Johnson , H.A. Bechtel , M.B. Raschke , R. Piestun , Smart scattering scanning near-field optical microscopy . ACS Photonics 7 , 3346 - 3352 ( 2020 ). http://doi.org/10.1021/acsphotonics.0c00553 http://doi.org/10.1021/acsphotonics.0c00553
X. Chen et al. , Hybrid machine learning for scanning near-field optical spectroscopy . ACS Photonics 8 , 2987 - 2996 ( 2021 ). http://doi.org/10.1021/acsphotonics.1c00915 http://doi.org/10.1021/acsphotonics.1c00915
T. Siday et al. , All-optical subcycle microscopy on atomic length scales . Nature 629 , 329 - 334 ( 2024 ). http://doi.org/10.1038/s41586-024-07355-7 http://doi.org/10.1038/s41586-024-07355-7
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构