收稿日期:2025-01-22,
修回日期:2025-03-19,
录用日期:2025-04-01,
网络出版日期:2025-06-02,
纸质出版日期:2025-12
Scan QR Code
Ultrafast neuromorphic computing driven by polariton nonlinearities[J]. eLight, 2025,5.
Yusong Gan, Ying Shi, Sanjib Ghosh, et al. Ultrafast neuromorphic computing driven by polariton nonlinearities[J]. Elight, 2025, 5.
Ultrafast neuromorphic computing driven by polariton nonlinearities[J]. eLight, 2025,5. DOI: 10.1186/s43593-025-00087-9.
Yusong Gan, Ying Shi, Sanjib Ghosh, et al. Ultrafast neuromorphic computing driven by polariton nonlinearities[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00087-9.
Neuromorphic computing offers a promising approach to artificial intelligence by mimicking biological neural networks to perform complex tasks efficiently. While software-based simulations have demonstrated the potential of neuromorphic architectures
a physical platform is crucial to fully realize its computational advantages. Herein
we present the first demonstration of perovskite microcavity exciton polaritons as a platform for reservoir computing-based artificial neural networks. By leveraging the nonlinear response properties of exciton polaritons
we developed a neuromorphic computing architecture capable of performing classification tasks with single-step training
eliminating the need for iterative algorithms like backpropagation. Applying this system to a handwritten digit recognition task
we achieve 92% classification accuracy at room temperature. Notably
we also show that the system is dynamically nonlinear
further enhancing the potential to improve classification efficiency and address more complex tasks. Our findings advocate the promising capabilities of perovskite exciton polaritons as energy-efficient
ultrafast response platforms for artificial intelligence
paving the way for next-generation computational technologies.
M. Lundstrom , Moore’s law forever? . Science 299 , 210 - 211 ( 2003 ). http://doi.org/10.1126/science.1079567 http://doi.org/10.1126/science.1079567
S.A. McKee, Reflections on the memory wall. Proceedings of the 1st conference on Computing frontiers (2004)
A. Krogh , What are artificial neural networks? . Nat. Biotechnol. 26 , 195 - 197 ( 2008 ). http://doi.org/10.1038/nbt1386 http://doi.org/10.1038/nbt1386
J.J. Hopfield , Neural networks and physical systems with emergent collective computational abilities . Proc. Natl. Acad. Sci. USA 79 , 2554 - 8 ( 1982 ). http://doi.org/10.1073/pnas.79.8.2554 http://doi.org/10.1073/pnas.79.8.2554
E. García-Martín , C.F. Rodrigues , G. Riley , H. Grahn , Estimation of energy consumption in machine learning . J. Parallel Distrib. Comput. 134 , 75 - 88 ( 2019 ). http://doi.org/10.1016/j.jpdc.2019.07.007 http://doi.org/10.1016/j.jpdc.2019.07.007
N. Jones , How to stop data centres from gobbling up the world’s electricity . Nature 561 , 163 - 166 ( 2018 ). http://doi.org/10.1038/d41586-018-06610-y http://doi.org/10.1038/d41586-018-06610-y
A. Graves et al. , A novel connectionist system for unconstrained handwriting recognition . IEEE Trans. Pattern Anal. Mach. Intell. 31 , 855 - 68 ( 2009 ). http://doi.org/10.1109/TPAMI.2008.137 http://doi.org/10.1109/TPAMI.2008.137
J.T. Connor , R.D. Martin , L.E. Atlas , Recurrent neural networks and robust time series prediction . IEEE Trans. Neural Netw. 5 , 240 - 54 ( 1994 ). http://doi.org/10.1109/72.279188 http://doi.org/10.1109/72.279188
v.N. John, First Draft of a Report on the EDVAC (1945)
D. Sanvitto , S. Kena-Cohen , The road towards polaritonic devices . Nat. Mater. 15 , 1061 - 73 ( 2016 ). http://doi.org/10.1038/nmat4668 http://doi.org/10.1038/nmat4668
T.C.H. Liew , I.A. Shelykh , G. Malpuech , Polaritonic devices . Phys. E Low-Dimens. Syst. Nanostruct. 43 , 1543 - 1568 ( 2011 ). http://doi.org/10.1016/j.physe.2011.04.003 http://doi.org/10.1016/j.physe.2011.04.003
I. Carusotto , C. Ciuti , Quantum fluids of light . Rev. Modern Phys. 85 , 299 - 366 ( 2013 ). http://doi.org/10.1103/RevModPhys.85.299 http://doi.org/10.1103/RevModPhys.85.299
T. Byrnes , N.Y. Kim , Y. Yamamoto , Exciton-polariton condensates . Nat. Phys. 10 , 803 - 813 ( 2014 ). http://doi.org/10.1038/nphys3143 http://doi.org/10.1038/nphys3143
H. Deng , H. Haug , Y. Yamamoto , Exciton-polariton Bose-Einstein condensation . Rev. Modern Phys. 82 , 1489 - 1537 ( 2010 ). http://doi.org/10.1103/RevModPhys.82.1489 http://doi.org/10.1103/RevModPhys.82.1489
D. Ballarini et al. , All-optical polariton transistor . Nat. Commun. 4 , 1778 ( 2013 ). http://doi.org/10.1038/ncomms2734 http://doi.org/10.1038/ncomms2734
J. Feng et al. , All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires . Sci. Adv. 7 , eabj6627 ( 2021 ). http://doi.org/10.1126/sciadv.abj6627 http://doi.org/10.1126/sciadv.abj6627
M. De Giorgi et al. , Control and ultrafast dynamics of a two-fluid polariton switch . Phys. Rev. Lett. 109 ,( 2012 ). http://doi.org/10.1103/PhysRevLett.109.266407 http://doi.org/10.1103/PhysRevLett.109.266407
A. Dreismann et al. , A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates . Nat. Mater. 15 , 1074 - 8 ( 2016 ). http://doi.org/10.1038/nmat4722 http://doi.org/10.1038/nmat4722
J. Zhao et al. , Room temperature polariton spin switches based on van der waals superlattices . Nat. Commun. 15 , 7601 ( 2024 ). http://doi.org/10.1038/s41467-024-51612-2 http://doi.org/10.1038/s41467-024-51612-2
C. Leyder et al. , Interference of coherent polariton beams in microcavities: polarization-controlled optical gates . Phys. Rev. Lett. 99 ,( 2007 ). http://doi.org/10.1103/PhysRevLett.99.196402 http://doi.org/10.1103/PhysRevLett.99.196402
E. Cancellieri et al. , Logic gates with bright dissipative polariton solitons in Bragg cavity systems . Phys. Rev. B 92 ,( 2015 ). http://doi.org/10.1103/PhysRevB.92.174528 http://doi.org/10.1103/PhysRevB.92.174528
D. Ballarini et al. , Polaritonic neuromorphic computing outperforms linear classifiers . Nano Lett. 20 , 3506 - 3512 ( 2020 ). http://doi.org/10.1021/acs.nanolett.0c00435 http://doi.org/10.1021/acs.nanolett.0c00435
A. Opala , S. Ghosh , T.C.H. Liew , M. Matuszewski , Neuromorphic computing in Ginzburg-Landau polariton-lattice systems . Phys. Rev. Appl. 11 ,( 2019 ). http://doi.org/10.1103/PhysRevApplied.11.064029 http://doi.org/10.1103/PhysRevApplied.11.064029
H. Xu , S. Ghosh , M. Matuszewski , T.C.H. Liew , Universal self-correcting computing with disordered exciton-polariton neural networks . Phys. Rev. Appl. 13 ,( 2020 ). http://doi.org/10.1103/PhysRevApplied.13.064074 http://doi.org/10.1103/PhysRevApplied.13.064074
H. Xu , T. Krisnanda , W. Verstraelen , T.C.H. Liew , S. Ghosh , Superpolynomial quantum enhancement in polaritonic neuromorphic computing . Phys. Rev. B 103 ,( 2021 ). http://doi.org/10.1103/PhysRevB.103.195302 http://doi.org/10.1103/PhysRevB.103.195302
R. Mirek et al. , Neuromorphic binarized polariton networks . Nano Lett. 21 , 3715 - 3720 ( 2021 ). http://doi.org/10.1021/acs.nanolett.0c04696 http://doi.org/10.1021/acs.nanolett.0c04696
S. Ghosh et al. , Microcavity exciton polaritons at room temperature . Photon. Insights 1 , R04 ( 2022 ). http://doi.org/10.3788/PI.2022.R04 http://doi.org/10.3788/PI.2022.R04
R. Su et al. , Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets . Nano Lett. 17 , 3982 - 3988 ( 2017 ). http://doi.org/10.1021/acs.nanolett.7b01956 http://doi.org/10.1021/acs.nanolett.7b01956
R. Su et al. , Perovskite semiconductors for room-temperature exciton-polaritonics . Nat. Mater. 20 , 1315 - 1324 ( 2021 ). http://doi.org/10.1038/s41563-021-01035-x http://doi.org/10.1038/s41563-021-01035-x
X. Liu et al. , Strong light-matter coupling in two-dimensional atomic crystals . Nat. Photon. 9 , 30 - 34 ( 2014 ). http://doi.org/10.1038/nphoton.2014.304 http://doi.org/10.1038/nphoton.2014.304
Y. Luo et al. , Strong light-matter coupling in van der waals materials . Light Sci. Appl. 13 , 203 ( 2024 ). http://doi.org/10.1038/s41377-024-01523-0 http://doi.org/10.1038/s41377-024-01523-0
J. Zhao et al. , Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity . Nat. Nanotechnol. 17 , 396 - 402 ( 2022 ). http://doi.org/10.1038/s41565-022-01073-9 http://doi.org/10.1038/s41565-022-01073-9
W. Xie et al. , Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate . Phys. Rev. Lett. 108 ,( 2012 ). http://doi.org/10.1103/PhysRevLett.108.166401 http://doi.org/10.1103/PhysRevLett.108.166401
K.S. Daskalakis , S.A. Maier , R. Murray , S. Kena-Cohen , Nonlinear interactions in an organic polariton condensate . Nat. Mater. 13 , 271 - 8 ( 2014 ). http://doi.org/10.1038/nmat3874 http://doi.org/10.1038/nmat3874
Y. Lecun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to document recognition . Proc. IEEE 86 , 2278 - 2324 ( 1998 ). http://doi.org/10.1109/5.726791 http://doi.org/10.1109/5.726791
Y.Z. Chen et al. , Unraveling the ultrafast coherent dynamics of exciton polariton propagation at room temperature . Nano Lett. 23 , 8704 - 8711 ( 2023 ). http://doi.org/10.1021/acs.nanolett.3c02547 http://doi.org/10.1021/acs.nanolett.3c02547
J. Wu et al. Perovskite polariton parametric oscillator. Adv. Photon. 3 , 055003 (2021)
J. Wu et al. , Nonlinear parametric scattering of exciton polaritons in perovskite microcavities . Nano Lett. 21 , 3120 - 3126 ( 2021 ). http://doi.org/10.1021/acs.nanolett.1c00283 http://doi.org/10.1021/acs.nanolett.1c00283
R. Su et al. , Observation of exciton polariton condensation in a perovskite lattice at room temperature . Nat. Phys. 16 , 301 - 306 ( 2020 ). http://doi.org/10.1038/s41567-019-0764-5 http://doi.org/10.1038/s41567-019-0764-5
Y. Shi et al. , Coherent optical spin hall transport for polaritonics at room temperature . Nat. Mater. 24 , 56 - 62 ( 2025 ). http://doi.org/10.1038/s41563-024-02028-2 http://doi.org/10.1038/s41563-024-02028-2
N.G. Berloff et al. , Realizing the classical XY Hamiltonian in polariton simulators . Nat. Mater. 16 , 1120 - 1126 ( 2017 ). http://doi.org/10.1038/nmat4971 http://doi.org/10.1038/nmat4971
S. Geman , E. Bienenstock , R. Doursat , Neural networks and the bias/variance dilemma . Neural Comput. 4 , 1 - 58 ( 1992 ). http://doi.org/10.1162/neco.1992.4.1.1 http://doi.org/10.1162/neco.1992.4.1.1
G.C. McDonald , Ridge regression . WIREs Comput. Statis. 1 , 93 - 100 ( 2009 ). http://doi.org/10.1002/wics.14 http://doi.org/10.1002/wics.14
M. Lukoševičius, A practical guide to applying echo state networks, pp. 659–686 (2012)
R. Mirek et al. , Neural networks based on ultrafast time-delayed effects in exciton polaritons . Phys. Rev. Appl. 17 ,( 2022 ). http://doi.org/10.1103/PhysRevApplied.17.054037 http://doi.org/10.1103/PhysRevApplied.17.054037
H. Li et al. , All-optical temporal logic gates in localized exciton polaritons . Nat. Photon. 18 , 864 - 869 ( 2024 ). http://doi.org/10.1038/s41566-024-01483-2 http://doi.org/10.1038/s41566-024-01483-2
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构