收稿日期:2025-03-04,
修回日期:2025-04-28,
录用日期:2025-04-29,
网络出版日期:2025-06-17,
纸质出版日期:2025-12
Scan QR Code
Parallel optical computing capable of 100-wavelength multiplexing[J]. eLight, 2025,5.
Xiao Yu, Ziqi Wei, Fangyuan Sha, et al. Parallel optical computing capable of 100-wavelength multiplexing[J]. Elight, 2025, 5.
Parallel optical computing capable of 100-wavelength multiplexing[J]. eLight, 2025,5. DOI: 10.1186/s43593-025-00088-8.
Xiao Yu, Ziqi Wei, Fangyuan Sha, et al. Parallel optical computing capable of 100-wavelength multiplexing[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00088-8.
In the era of artificial intelligence
the computing hardware is of critical importance
with various new modalities explored. Information processing using photons
with abundant intrinsic degrees of freedom
as the carrier could embrace low loss
high speed
low latency
low power consumption
and high parallelism. Here
harvesting the intrinsic frequency channels
we propose and demonstrate a parallel optical computing architecture powered by a soliton microcomb source
a broadband Mach–Zehnder interferometer (MZI) mesh and a parallel MZI mesh computing model. The examinations validate the system's capability to perform over 100-frequency channel multiplexed parallel optical information processing. Both spectral consistency and matrix consistency exceed 0.9. This achievement enables a 100-fold increase (and even beyond) in optical computility through ultra-high parallelism without scaling up the chip size
offering a novel technological pathway for future optical computers.
C.M. Bishop , Pattern Recognition and Machine Learning, Softcover reprint of the original 1st edition 2006 (corrected at 8th printing 2009) ( Springer , New York, New York, NY , 2016 ).
Y. LeCun , Y. Bengio , G. Hinton , Deep learning . Nature 521 , 436 ( 2015 ). http://doi.org/10.1038/nature14539 http://doi.org/10.1038/nature14539
M.I. Jordan , T.M. Mitchell , Machine learning: Trends, perspectives, and prospects . Science 349 , 255 ( 2015 ). http://doi.org/10.1126/science.aaa8415 http://doi.org/10.1126/science.aaa8415
B. Bai , Y. Li , Y. Luo , X. Li , E. Çetintaş , M. Jarrahi , A. Ozcan , All-optical image classification through unknown random diffusers using a single-pixel diffractive network, Light: Sci . Appl. 12 , 69 ( 2023 ).
Z. Xue , T. Zhou , Z. Xu , S. Yu , Q. Dai , L. Fang , Fully forward mode training for optical neural networks . Nature 632 , 280 ( 2024 ). http://doi.org/10.1038/s41586-024-07687-4 http://doi.org/10.1038/s41586-024-07687-4
X. Lin , Y. Rivenson , N.T. Yardimci , M. Veli , M. Jarrahi , A. Ozcan , All-Optical Machine Learning Using Diffractive Deep Neural Networks . Science 361 , 1004 ( 2018 ). http://doi.org/10.1126/science.aat8084 http://doi.org/10.1126/science.aat8084
G. Wetzstein , A. Ozcan , S. Gigan , S. Fan , D. Englund , M. Soljačić , C. Denz , D.A.B. Miller , D. Psaltis , Inference in artificial intelligence with deep optics and photonics . Nature 588 , 39 ( 2020 ). http://doi.org/10.1038/s41586-020-2973-6 http://doi.org/10.1038/s41586-020-2973-6
J. Hu , D. Mengu , D.C. Tzarouchis , B. Edwards , N. Engheta , A. Ozcan , Diffractive optical computing in free space . Nat. Commun. 15 , 1525 ( 2024 ). http://doi.org/10.1038/s41467-024-45982-w http://doi.org/10.1038/s41467-024-45982-w
Q. Jia et al. , Partially coherent diffractive optical neural network . Optica 11 , 1742 ( 2024 ). http://doi.org/10.1364/OPTICA.531919 http://doi.org/10.1364/OPTICA.531919
Z. Wang et al. , Single-layer spatial analog meta-processor for imaging processing . Nat. Commun. 13 , 2188 ( 2022 ). http://doi.org/10.1038/s41467-022-29732-4 http://doi.org/10.1038/s41467-022-29732-4
T. Zhu , Y. Zhou , Y. Lou , H. Ye , M. Qiu , Z. Ruan , S. Fan , Plasmonic computing of spatial differentiation . Nat. Commun. 8 , 15391 ( 2017 ). http://doi.org/10.1038/ncomms15391 http://doi.org/10.1038/ncomms15391
T. Zhu , C. Guo , J. Huang , H. Wang , M. Orenstein , Z. Ruan , S. Fan , Topological optical differentiator . Nat. Commun. 12 , 680 ( 2021 ). http://doi.org/10.1038/s41467-021-20972-4 http://doi.org/10.1038/s41467-021-20972-4
C. Huang et al. , Silicon photonic-electronic neural network for fibre nonlinearity compensation . Nat. Electron. 4 , 837 ( 2021 ). http://doi.org/10.1038/s41928-021-00661-2 http://doi.org/10.1038/s41928-021-00661-2
Y. Shen et al. , Deep learning with coherent nanophotonic circuits . Nature Photon 11 , 441 ( 2017 ). http://doi.org/10.1038/nphoton.2017.93 http://doi.org/10.1038/nphoton.2017.93
T. Fu , Y. Zang , Y. Huang , Z. Du , H. Huang , C. Hu , M. Chen , S. Yang , H. Chen , Photonic machine learning with on-chip diffractive optics . Nat. Commun. 14 , 70 ( 2023 ). http://doi.org/10.1038/s41467-022-35772-7 http://doi.org/10.1038/s41467-022-35772-7
J. Cheng et al. , Multimodal deep learning using on-chip diffractive optics with in situ training capability . Nat. Commun. 15 , 6189 ( 2024 ). http://doi.org/10.1038/s41467-024-50677-3 http://doi.org/10.1038/s41467-024-50677-3
S. Hong et al. , Versatile parallel signal processing with a scalable silicon photonic chip . Nat. Commun. 16 , 288 ( 2025 ). http://doi.org/10.1038/s41467-024-55162-5 http://doi.org/10.1038/s41467-024-55162-5
X. Meng et al. , Compact optical convolution processing unit based on multimode interference . Nat. Commun. 14 , 3000 ( 2023 ). http://doi.org/10.1038/s41467-023-38786-x http://doi.org/10.1038/s41467-023-38786-x
D. Wang , Y. Nie , G. Hu , H.K. Tsang , C. Huang , Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS . Nat. Commun. 15 , 10841 ( 2024 ). http://doi.org/10.1038/s41467-024-55172-3 http://doi.org/10.1038/s41467-024-55172-3
X. Wang , P. Xie , B. Chen , X. Zhang , Chip-based high-dimensional optical neural network . Nano-Micro Lett. 14 , 221 ( 2022 ). http://doi.org/10.1007/s40820-022-00957-8 http://doi.org/10.1007/s40820-022-00957-8
B. Dong et al. , Partial coherence enhances parallelized photonic computing . Nature 632 , 55 ( 2024 ). http://doi.org/10.1038/s41586-024-07590-y http://doi.org/10.1038/s41586-024-07590-y
L.G. Wright , T. Onodera , M.M. Stein , T. Wang , D.T. Schachter , Z. Hu , P.L. McMahon , Deep physical neural networks trained with backpropagation . Nature 601 , 549 ( 2022 ). http://doi.org/10.1038/s41586-021-04223-6 http://doi.org/10.1038/s41586-021-04223-6
H.H. Zhu , Space-efficient optical computing with an integrated chip diffractive neural network . Nat. Commun. 13 , 1044 ( 2022 ). http://doi.org/10.1038/s41467-022-28702-0 http://doi.org/10.1038/s41467-022-28702-0
T. Wang , M.M. Sohoni , L.G. Wright , M.M. Stein , S.-Y. Ma , T. Onodera , M.G. Anderson , P.L. McMahon , Image sensing with multilayer, nonlinear optical neural networks . Nat. Photon. 17 , 408 ( 2023 ). http://doi.org/10.1038/s41566-023-01170-8 http://doi.org/10.1038/s41566-023-01170-8
J. Feldmann , N. Youngblood , C.D. Wright , H. Bhaskaran , W.H.P. Pernice , All-optical spiking neurosynaptic networks with self-learning capabilities . Nature 569 , 208 ( 2019 ). http://doi.org/10.1038/s41586-019-1157-8 http://doi.org/10.1038/s41586-019-1157-8
B.J. Shastri , A.N. Tait , T. Ferreira De Lima , W.H.P. Pernice , H. Bhaskaran , C.D. Wright , P.R. Prucnal , Photonics for artificial intelligence and neuromorphic computing . Nat. Photon. 15 , 102 ( 2021 ). http://doi.org/10.1038/s41566-020-00754-y http://doi.org/10.1038/s41566-020-00754-y
Y. Zhang , S. Xiang , C. Yu , S. Gao , Y. Han , X. Guo , Y. Zhang , Y. Shi , Y. Hao , Photonic neuromorphic pattern recognition with a spiking DFB-SA laser subject to incoherent optical injection . Laser Photon. Rev. 19 , 2400482 ( 2025 ). http://doi.org/10.1002/lpor.202400482 http://doi.org/10.1002/lpor.202400482
H. Shu et al. , Microcomb-driven silicon photonic systems . Nature 605 , 457 ( 2022 ). http://doi.org/10.1038/s41586-022-04579-3 http://doi.org/10.1038/s41586-022-04579-3
W. Liu , M. Li , R.S. Guzzon , E.J. Norberg , J.S. Parker , M. Lu , L.A. Coldren , J. Yao , A fully reconfigurable photonic integrated signal processor . Nat. Photon. 10 , 190 ( 2016 ). http://doi.org/10.1038/nphoton.2015.281 http://doi.org/10.1038/nphoton.2015.281
D. Marpaung , J. Yao , J. Capmany , Integrated microwave photonics . Nat. Photon. 13 , 80 ( 2019 ). http://doi.org/10.1038/s41566-018-0310-5 http://doi.org/10.1038/s41566-018-0310-5
N. Qian , D. Zhou , H. Shu , M. Zhang , X. Wang , D. Dai , X. Deng , W. Zou , Analog parallel processor for broadband multifunctional integrated system based on silicon photonic platform, Light:s Sci . Appl. 14 , 71 ( 2025 ).
S. Xu , J. Wang , S. Yi , W. Zou , High-order tensor flow processing using integrated photonic circuits . Nat. Commun. 13 , 7970 ( 2022 ). http://doi.org/10.1038/s41467-022-35723-2 http://doi.org/10.1038/s41467-022-35723-2
W. Zhou, B. Dong, N. Farmakidis, X. Li, N. Youngblood, K. Huang, Y. He, C. David Wright, W. H. P. Pernice, and H. Bhaskaran, In-memory photonic dot-product engine with electrically programmable weight banks, Nat. Commun. 14 , 2887 (2023).
B. Dong et al. , Higher-dimensional processing using a photonic tensor core with continuous-time data . Nat. Photon. 17 , 1080 ( 2023 ). http://doi.org/10.1038/s41566-023-01313-x http://doi.org/10.1038/s41566-023-01313-x
J. Feldmann et al. , Parallel convolutional processing using an integrated photonic tensor core . Nature 589 , 52 ( 2021 ). http://doi.org/10.1038/s41586-020-03070-1 http://doi.org/10.1038/s41586-020-03070-1
X. Jiang , Z. He , B. Wu , J. Cheng , J. Xu , H. Zhou , J. Dong , C.-W. Qiu , X. Zhang , Programmable Photonic Solver for Computationally Complex Problems . ACS Photonics 10 , 4340 ( 2023 ). http://doi.org/10.1021/acsphotonics.3c01164 http://doi.org/10.1021/acsphotonics.3c01164
Q. Ling , P. Dong , Y. Chu , X. Dong , J. Chen , D. Dai , Y. Shi , On-chip optical matrix-vector multiplier based on mode division multiplexing . Chip 2 ,( 2023 ). http://doi.org/10.1016/j.chip.2023.100061 http://doi.org/10.1016/j.chip.2023.100061
S. Hua et al. , An integrated large-scale photonic accelerator with ultralow latency . Nature 640 , 361 ( 2025 ). http://doi.org/10.1038/s41586-025-08786-6 http://doi.org/10.1038/s41586-025-08786-6
S.R. Ahmed et al. , Universal photonic artificial intelligence acceleration . Nature 640 , 368 ( 2025 ). http://doi.org/10.1038/s41586-025-08854-x http://doi.org/10.1038/s41586-025-08854-x
Z. Xu , T. Zhou , M. Ma , C. Deng , Q. Dai , L. Fang , Large-scale photonic chiplet taichi empowers 160-TOPS/W artificial general intelligence . Science 384 , 202 ( 2024 ). http://doi.org/10.1126/science.adl1203 http://doi.org/10.1126/science.adl1203
X. Xu et al. , 11 TOPS photonic convolutional accelerator for optical neural networks . Nature 589 , 44 ( 2021 ). http://doi.org/10.1038/s41586-020-03063-0 http://doi.org/10.1038/s41586-020-03063-0
B. Bai et al. , Microcomb-based integrated photonic processing unit . Nat. Commun. 14 , 66 ( 2023 ). http://doi.org/10.1038/s41467-022-35506-9 http://doi.org/10.1038/s41467-022-35506-9
X. Wang , X. Qiu , M. Liu , F. Liu , M. Li , L. Xue , B. Chen , M. Zhang , P. Xie , Flat soliton microcomb source . OES 2 ,( 2023 ). http://doi.org/10.29026/oes.2023.230024 http://doi.org/10.29026/oes.2023.230024
M. Reck , A. Zeilinger , H.J. Bernstein , P. Bertani , Experimental realization of any discrete unitary operator . Phys. Rev. Lett. 73 , 58 ( 1994 ). http://doi.org/10.1103/PhysRevLett.73.58 http://doi.org/10.1103/PhysRevLett.73.58
S. Pai et al. , Experimentally realized in situ backpropagation for deep learning in photonic neural networks . Science 380 , 398 ( 2023 ). http://doi.org/10.1126/science.ade8450 http://doi.org/10.1126/science.ade8450
T.W. Hughes , M. Minkov , Y. Shi , S. Fan , Training of photonic neural networks through in situ backpropagation . Optica 5 , 864 ( 2018 ). http://doi.org/10.1364/OPTICA.5.000864 http://doi.org/10.1364/OPTICA.5.000864
Y. Wan , X. Liu , G. Wu , M. Yang , G. Yan , Y. Zhang , J. Wang , Efficient stochastic parallel gradient descent training for on-chip optical processor . Opto-Electro. Adv. 7 ,( 2024 ). http://doi.org/10.29026/oea.2024.230182 http://doi.org/10.29026/oea.2024.230182
S. Bandyopadhyay , R. Hamerly , D. Englund , Hardware error correction for programmable photonics . Optica, OPTICA 8 , 1247 ( 2021 ). http://doi.org/10.1364/OPTICA.424052 http://doi.org/10.1364/OPTICA.424052
S. Bandyopadhyay , A. Sludds , S. Krastanov , R. Hamerly , N. Harris , D. Bunandar , M. Streshinsky , M. Hochberg , D. Englund , Single-chip photonic deep neural network with forward-only training . Nat. Photon. 18 , 1335 ( 2024 ). http://doi.org/10.1038/s41566-024-01567-z http://doi.org/10.1038/s41566-024-01567-z
X. Xu , G. Ren , T. Feleppa , X. Liu , A. Boes , A. Mitchell , A.J. Lowery , Self-calibrating programmable photonic integrated circuits . Nat. Photon. 16 , 595 ( 2022 ). http://doi.org/10.1038/s41566-022-01020-z http://doi.org/10.1038/s41566-022-01020-z
R. Hamerly , S. Bandyopadhyay , D. Englund , Asymptotically fault-tolerant programmable photonics . Nat. Commun. 13 , 6831 ( 2022 ). http://doi.org/10.1038/s41467-022-34308-3 http://doi.org/10.1038/s41467-022-34308-3
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构