收稿日期:2025-02-10,
修回日期:2025-05-06,
录用日期:2025-06-14,
网络出版日期:2025-07-25,
纸质出版日期:2025-12
Scan QR Code
Soliton microcombs in X-cut LiNbO3 microresonators[J]. eLight, 2025,5.
Binbin Nie, Xiaomin Lv, Chen Yang, et al. Soliton microcombs in X-cut LiNbO3 microresonators[J]. Elight, 2025, 5.
Soliton microcombs in X-cut LiNbO3 microresonators[J]. eLight, 2025,5. DOI: 10.1186/s43593-025-00093-x.
Binbin Nie, Xiaomin Lv, Chen Yang, et al. Soliton microcombs in X-cut LiNbO3 microresonators[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00093-x.
Chip-scale integration of optical frequency combs
particularly soliton microcombs
enables miniaturized instrumentation for timekeeping
ranging
and spectroscopy. Although soliton microcombs have been demonstrated on various material platforms
realizing complete comb functionality on photonic chips requires the co-integration of high-speed modulators and efficient frequency doublers
features that are available in a monolithic form on X-cut thin-film lithium niobate (TFLN). However
the pronounced Raman nonlinearity associated with extraordinary light in this platform has so far precluded soliton microcomb generation. Here
we report the generation of transverse-electric-polarized soliton microcombs with a 25 GHz repetition rate in high-Q microresonators on X-cut TFLN chips. By precisely orienting the racetrack microresonator relative to the optical axis
we mitigate Raman nonlinearity and enable soliton formation under continuous-wave laser pumping. Moreover
the soliton microcomb spectra are extended to 350 nm with pulsed laser pumping. This work expands the capabilities of TFLN photonics and paves the way for the monolithic integration of fast-tunable
self-referenced microcombs.
A. Boes et al. , Lithium niobate photonics: Unlocking the electromagnetic spectrum . Science 379 , eabj4396 ( 2023 ).
D. Zhu et al. , Integrated photonics on thin-film lithium niobate . Adv. Opt. Photonics 13 , 242 - 352 ( 2021 ).
C. Wang et al. , Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages . Nature 562 , 101 - 104 ( 2018 ).
M. Xu et al. , High-performance coherent optical modulators based on thin-film lithium niobate platform . Nat. Commun. 11 , 3911 ( 2020 ).
C. Wang et al. , Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides . Optica 5 , 1438 - 1441 ( 2018 ).
J. Lu et al. , Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W . Optica 6 , 1455 - 1460 ( 2019 ).
P.-K. Chen et al. , Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides . Nat. Nanotechnol. 19 , 44 - 50 ( 2024 ).
T.J. Kippenberg , R. Holzwarth , S. Diddams , Microresonator-based optical frequency combs . Science 332 , 555 - 559 ( 2011 ).
L. Chang , S. Liu , J.E. Bowers , Integrated optical frequency comb technologies . Nat. Photon. 16 , 95 - 108 ( 2022 ).
D.T. Spencer et al. , An optical-frequency synthesizer using integrated photonics . Nature 557 , 81 - 85 ( 2018 ).
Z.L. Newman et al. , Architecture for the photonic integration of an optical atomic clock . Optica 6 , 680 - 685 ( 2019 ).
J. Feldmann et al. , Parallel convolutional processing using an integrated photonic tensor core . Nature 589 , 52 - 58 ( 2021 ).
Y. He et al. , Self-starting bi-chromatic <math id="IEq90_Math"><msub><mtext>LiNbO</mtext><mn>3</mn></msub></math> $$$\text{LiNbO}_3$$$ soliton microcomb . Optica 6 , 1138 - 1144 ( 2019 ).
Z. Gong , X. Liu , Y. Xu , H.X. Tang , Near-octave lithium niobate soliton microcomb. Optica 7 , 1275 - 1278 ( 2020 ).
Z. Gong et al. , Soliton microcomb generation at 2 <math id="IEq92_Math"><mi>μ</mi></math> $$$\mu$$$ m in z-cut lithium niobate microring resonators . Opt. Lett. 44 , 3182 - 3185 ( 2019 ).
X. Lv et al. , Broadband microwave-rate dark pulse microcombs in dissipation-engineered <math id="IEq94_Math"><mrow><mspace width="0.333333em"/><msub><mtext>LiNbO</mtext><mn>3</mn></msub></mrow></math> $$$\text{ LiNbO}_3$$$ microresonators . Nat. Commun. 16 , 2389 ( 2025 ).
M. Zhang et al. , Broadband electro-optic frequency comb generation in a lithium niobate microring resonator . Nature 568 , 373 - 377 ( 2019 ).
A. Rueda , F. Sedlmeir , M. Kumari , G. Leuchs , H.G. Schwefel , Resonant electro-optic frequency comb . Nature 568 , 378 - 381 ( 2019 ).
Y. Hu et al. , High-efficiency and broadband on-chip electro-optic frequency comb generators . Nat. Photon. 16 , 679 - 685 ( 2022 ).
P.-Y. Wang et al. , Octave soliton microcombs in lithium niobate microresonators . Opt. Lett. 49 , 1729 - 1732 ( 2024 ).
Y. Song , Y. Hu , X. Zhu , K. Yang , M. Lončar , Octave-spanning Kerr soliton frequency combs in dispersion-and dissipation-engineered lithium niobate microresonators . Light Sci. Appl. 13 , 225 ( 2024 ).
R. Schaufele , M. Weber , Raman scattering by lithium niobate . Phys. Rev. 152 , 705 ( 1966 ).
Y. Okawachi et al. , Competition between Raman and Kerr effects in microresonator comb generation . Opt. Lett. 42 , 2786 - 2789 ( 2017 ).
C. Wang et al. , Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation . Nat. commun. 10 , 978 ( 2019 ).
M. Yu et al. , Raman lasing and soliton mode-locking in lithium niobate microresonators . Light Sci. Appl. 9 , 9 ( 2020 ).
Z. Gong et al. , Photonic dissipation control for Kerr soliton generation in strongly Raman-active media . Phys. Rev. Lett. 125 ,( 2020 ).
P. Marin-Palomo et al. , Microresonator-based solitons for massively parallel coherent optical communications . Nature 546 , 274 - 279 ( 2017 ).
M.-G. Suh , Q.-F. Yang , K.Y. Yang , X. Yi , K.J. Vahala , Microresonator soliton dual-comb spectroscopy . Science 354 , 600 - 603 ( 2016 ).
C. Bao et al. , Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy . Nat. Commun. 12 , 6573 ( 2021 ).
Y. Repelin , E. Husson , F. Bennani , C. Proust , Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations . J. Phys. Chem. Solids 60 , 819 - 825 ( 1999 ).
C. Wang et al. , Lithium tantalate photonic integrated circuits for volume manufacturing . Nature 629 , 784 - 790 ( 2024 ).
X. Ji et al. , Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits . Commun. Phys. 5 , 84 ( 2022 ).
J. Wang , P. Chen , D. Dai , L. Liu , Polarization coupling of <math id="IEq96_Math"><mi>x</mi></math> $$$x$$$ -cut thin film lithium niobate based waveguides . IEEE Photonics J. 12 , 1 - 10 ( 2020 ).
Y. He et al. , High-speed tunable microwave-rate soliton microcomb . Nat. Commun. 14 , 3467 ( 2023 ).
T. Herr et al. , Temporal solitons in optical microresonators . Nat. Photon. 8 , 145 - 152 ( 2014 ).
T. Carmon , L. Yang , K. Vahala , Dynamical thermal behavior and thermal self-stability of microcavities . Opt. Express 12 , 4742 - 4750 ( 2004 ).
J. Zhang et al. , Fundamental charge noise in electro-optic photonic integrated circuits . Nat. Phys. 21 , 304 - 311 ( 2025 ).
X. Yi , Q.-F. Yang , K.Y. Yang , M.-G. Suh , K. Vahala , Soliton frequency comb at microwave rates in a high-Q silica microresonator . Optica 2 , 1078 - 1085 ( 2015 ).
V. Brasch et al. , Photonic chip-based optical frequency comb using soliton Cherenkov radiation . Science 351 , 357 - 360 ( 2016 ).
H. Zhou et al. , Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities . Light Sci. Appl. 8 , 50 ( 2019 ).
S. Zhang et al. , Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser . Optica 6 , 206 - 212 ( 2019 ).
Z. Lu et al. , Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator . AIP Adv. 9 , 025314 ( 2019 ).
J.R. Stone et al. , Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs . Phys. Rev. Lett. 121 ,( 2018 ).
ÓB Helgason et al. , Surpassing the nonlinear conversion efficiency of soliton microcombs . Nat. Photon. 17 , 992 - 999 ( 2023 ).
Zhu, K. et al. Ultra-broadband soliton microcombs in resonantly-coupled microresonators. arXiv:2503.02022 http://arxiv.org/abs/2503.02022 (2025)
Q.-F. Yang , X. Yi , K.Y. Yang , K. Vahala , Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators . Optica 3 , 1132 - 1135 ( 2016 ).
X. Yi et al. , Single-mode dispersive waves and soliton microcomb dynamics . Nat. Commun. 8 , 14869 ( 2017 ).
F. Quinlan , The photodetection of ultrashort optical pulse trains for low noise microwave signal generation . Laser Photon. Rev. 17 , 2200773 ( 2023 ).
E. Obrzud , S. Lecomte , T. Herr , Temporal solitons in microresonators driven by optical pulses . Nat. Photon. 11 , 600 - 607 ( 2017 ).
J. Li et al. , Efficiency of pulse pumped soliton microcombs . Optica 9 , 231 - 239 ( 2022 ).
E. Obrzud et al. , A microphotonic astrocomb. Nat. Photon. 13 , 31 - 35 ( 2019 ).
M.H. Anderson et al. , Zero dispersion Kerr solitons in optical microresonators . Nat. commun. 13 , 4764 ( 2022 ).
Z. Xiao et al. , Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion . Light Sci. Appl. 12 , 33 ( 2023 ).
H. Murata , A. Morimoto , T. Kobayashi , S. Yamamoto , Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators . IEEE J. Sel. Top. Quant 6 , 1325 - 1331 ( 2000 ).
J. Zhang et al. , Ultrabroadband integrated electro-optic frequency comb in lithium tantalate . Nature 637 , 1096 - 1103 ( 2025 ).
X. Xue , X. Zheng , B. Zhou , Super-efficient temporal solitons in mutually coupled optical cavities . Nat. Photon. 13 , 616 - 622 ( 2019 ).
M. Yu et al. , Integrated femtosecond pulse generator on thin-film lithium niobate . Nature 612 , 252 - 258 ( 2022 ).
Y. Gao et al. , Compact lithium niobate microring resonators in the ultrahigh Q/V regime . Opt. Lett. 48 , 3949 - 3952 ( 2023 ).
X. Xue et al. , Mode-locked dark pulse Kerr combs in normal-dispersion microresonators . Nat. Photon. 9 , 594 - 600 ( 2015 ).
X. Xue et al. , Dispersion-less Kerr solitons in spectrally confined optical cavities . Light Sci. Appl. 12 , 19 ( 2023 ).
T.-H. Wu et al. , Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides . Nat. Photon. 18 , 218 - 223 ( 2024 ).
X. Lu et al. , Emerging integrated laser technologies in the visible and short near-infrared regimes . Nat. Photon. 18 , 1010 - 1023 ( 2024 ).
A. Isichenko et al. , Photonic integrated beam delivery for a rubidium 3D magneto-optical trap . Nat. Commun. 14 , 3080 ( 2023 ).
M.T. Hummon et al. , Photonic chip for laser stabilization to an atomic vapor with <math id="IEq98_Math"><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></math> $$$10^{-11}$$$ instability . Optica 5 , 443 - 449 ( 2018 ).
L. Stern , B. Desiatov , I. Goykhman , U. Levy , Nanoscale light-matter interactions in atomic cladding waveguides . Nat. Commun. 4 , 1548 ( 2013 ).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构