收稿日期:2025-01-22,
修回日期:2025-06-01,
录用日期:2025-06-14,
网络出版日期:2025-07-22,
纸质出版日期:2025-12
Scan QR Code
A chip-based optoelectronic-oscillator frequency comb[J]. eLight, 2025,5.
Jinbao Long, Zhongkai Wang, Huanfa Peng, et al. A chip-based optoelectronic-oscillator frequency comb[J]. Elight, 2025, 5.
A chip-based optoelectronic-oscillator frequency comb[J]. eLight, 2025,5. DOI: 10.1186/s43593-025-00094-w.
Jinbao Long, Zhongkai Wang, Huanfa Peng, et al. A chip-based optoelectronic-oscillator frequency comb[J]. Elight, 2025, 5. DOI: 10.1186/s43593-025-00094-w.
Microresonator-based Kerr frequency combs (“Kerr microcombs”) constitute chip-scale frequency combs of broad spectral bandwidth and repetition rate ranging from gigahertz to terahertz. A cri
tical application that exploits the coherence and high repetition rate of microcombs is microwave and millimeter-wave generation. Latest endeavor applying two-point optical frequency division (OFD) to photonic-chip-based microcombs has created microwaves with remarkably low phase noise. Nevertheless
existing approaches to achieve exceptionally coherent microcombs still require extensive active locking
additional lasers
and external RF or microwave sources
as well as sophisticated initiation. Here we demonstrate a simple and entirely passive (no active locking) architecture
which incorporates an optoelectronic oscillator (OEO) and symphonizes a coherent microcomb and a low-noise microwave spontaneously. Our OEO microcomb leverages state-of-the-art integrated chip devices
including a high-power DFB laser
a broadband silicon Mach–Zehnder modulator
an ultralow-loss silicon nitride microresonator
and a high-speed photodetector. Each can be manufactured in large volume with low cost and high yield using established CMOS and III-V foundries. Our system synergizes a microcomb of 10.7 GHz repetition rate and an X-band microwave with phase noise of − 97/
−
126/
−
130 dBc/Hz at 1/10/100 kHz Fourier frequency offset
yet does not demand active locking
additional lasers
and external RF or microwave sources. With potential to be fully integrated
our OEO microcomb can become an invaluable technology and building block for microwave photonics
radio-over-fiber
and optical communication.
T. Udem , R. Holzwarth , T.W. Hänsch , Optical frequency metrology . Nature 416 , 233 - 237 ( 2002 ). http://doi.org/10.1038/416233a http://doi.org/10.1038/416233a
S.T. Cundiff , J. Ye , Colloquium: femtosecond optical frequency combs . Rev. Mod. Phys. 75 , 325 - 342 ( 2003 ). http://doi.org/10.1103/RevModPhys.75.325 http://doi.org/10.1103/RevModPhys.75.325
T. Fortier , E. Baumann , 20 years of developments in optical frequency comb technology and applications . Commun. Phys. 2 , 153 ( 2019 ). http://doi.org/10.1038/s42005-019-0249-y http://doi.org/10.1038/s42005-019-0249-y
T.J. Kippenberg , A.L. Gaeta , M. Lipson , M.L. Gorodetsky , Dissipative Kerr solitons in optical microresonators . Science 361 , eaan8083 ( 2018 ). http://doi.org/10.1126/science.aan8083 http://doi.org/10.1126/science.aan8083
A.L. Gaeta , M. Lipson , T.J. Kippenberg , Photonic-chip-based frequency combs . Nat. Photonics 13 , 158 - 169 ( 2019 ). http://doi.org/10.1038/s41566-019-0358-x http://doi.org/10.1038/s41566-019-0358-x
S.A. Diddams , K. Vahala , T. Udem , Optical frequency combs: coherently uniting the electromagnetic spectrum . Science 369 , eaay3676 ( 2020 ). http://doi.org/10.1126/science.aay3676 http://doi.org/10.1126/science.aay3676
D.J. Moss , R. Morandotti , A.L. Gaeta , M. Lipson , New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics . Nat. Photonics 7 , 597 - 607 ( 2013 ). http://doi.org/10.1038/nphoton.2013.183 http://doi.org/10.1038/nphoton.2013.183
A. Kovach et al. , Emerging material systems for integrated optical Kerr frequency combs . Adv. Opt. Photon. 12 , 135 - 222 ( 2020 ). http://doi.org/10.1364/AOP.376924 http://doi.org/10.1364/AOP.376924
A. Dutt , A. Mohanty , A.L. Gaeta , M. Lipson , Nonlinear and quantum photonics using integrated optical materials . Nat. Rev. Mater. 9 , 321 - 346 ( 2024 ). http://doi.org/10.1038/s41578-024-00668-z http://doi.org/10.1038/s41578-024-00668-z
T. Komljenovic et al. , Heterogeneous silicon photonic integrated circuits . J. Lightwave Technol. 34 , 20 - 35 ( 2016 ). http://doi.org/10.1109/JLT.2015.2465382 http://doi.org/10.1109/JLT.2015.2465382
B. Stern , X. Ji , Y. Okawachi , A.L. Gaeta , M. Lipson , Battery-operated integrated frequency comb generator . Nature 562 , 401 - 405 ( 2018 ). http://doi.org/10.1038/s41586-018-0598-9 http://doi.org/10.1038/s41586-018-0598-9
C. Xiang et al. , Laser soliton microcombs heterogeneously integrated on silicon . Science 373 , 99 - 103 ( 2021 ). http://doi.org/10.1126/science.abh2076 http://doi.org/10.1126/science.abh2076
P. Del'Haye et al. , Optical frequency comb generation from a monolithic microresonator . Nature 450 , 1214 - 1217 ( 2007 ). http://doi.org/10.1038/nature06401 http://doi.org/10.1038/nature06401
T. Herr et al. , Temporal solitons in optical microresonators . Nat. Photonics 8 , 145 - 152 ( 2014 ). http://doi.org/10.1038/nphoton.2013.343 http://doi.org/10.1038/nphoton.2013.343
V. Brasch et al. , Photonic chip–based optical frequency comb using soliton Cherenkov radiation . Science 351 , 357 - 360 ( 2016 ). http://doi.org/10.1126/science.aad4811 http://doi.org/10.1126/science.aad4811
C. Joshi et al. , Thermally controlled comb generation and soliton modelocking in microresonators . Opt. Lett. 41 , 2565 - 2568 ( 2016 ). http://doi.org/10.1364/OL.41.002565 http://doi.org/10.1364/OL.41.002565
W. Liang et al. , High spectral purity Kerr frequency comb radio frequency photonic oscillator . Nat. Commun. 6 , 7957 ( 2015 ). http://doi.org/10.1038/ncomms8957 http://doi.org/10.1038/ncomms8957
X. Yi , Q.-F. Yang , K.Y. Yang , M.-G. Suh , K. Vahala , Soliton frequency comb at microwave rates in a high- Q silica microresonator . Optica 2 , 1078 - 1085 ( 2015 ). http://doi.org/10.1364/OPTICA.2.001078 http://doi.org/10.1364/OPTICA.2.001078
J. Liu et al. , Photonic microwave generation in the X- and K-band using integrated soliton microcombs . Nat. Photonics 14 , 486 - 491 ( 2020 ). http://doi.org/10.1038/s41566-020-0617-x http://doi.org/10.1038/s41566-020-0617-x
S. Zhang et al. , Terahertz wave generation using a soliton microcomb . Opt. Express 27 , 35257 - 35266 ( 2019 ). http://doi.org/10.1364/OE.27.035257 http://doi.org/10.1364/OE.27.035257
T. Tetsumoto et al. , Optically referenced 300 GHz millimetre-wave oscillator . Nat. Photonics 15 , 516 - 522 ( 2021 ). http://doi.org/10.1038/s41566-021-00790-2 http://doi.org/10.1038/s41566-021-00790-2
X. Xue et al. , Mode-locked dark pulse Kerr combs in normal-dispersion microresonators . Nat. Photonics 9 , 594 - 600 ( 2015 ). http://doi.org/10.1038/nphoton.2015.137 http://doi.org/10.1038/nphoton.2015.137
V.E. Lobanov , G. Lihachev , T.J. Kippenberg , M.L. Gorodetsky , Frequency combs and platicons in optical microresonators with normal GVD . Opt. Express 23 , 7713 - 7721 ( 2015 ). http://doi.org/10.1364/OE.23.007713 http://doi.org/10.1364/OE.23.007713
S.-W. Huang et al. , Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators . Phys. Rev. Lett. 114 ,( 2015 ). http://doi.org/10.1103/PhysRevLett.114.053901 http://doi.org/10.1103/PhysRevLett.114.053901
P. Parra-Rivas , D. Gomila , E. Knobloch , S. Coen , L. Gelens , Origin and stability of dark pulse Kerr combs in normal dispersion resonators . Opt. Lett. 41 , 2402 - 2405 ( 2016 ). http://doi.org/10.1364/OL.41.002402 http://doi.org/10.1364/OL.41.002402
E. Nazemosadat et al. , Switching dynamics of dark-pulse Kerr frequency comb states in optical microresonators . Phys. Rev. A 103 ,( 2021 ). http://doi.org/10.1103/PhysRevA.103.013513 http://doi.org/10.1103/PhysRevA.103.013513
W. Weng et al. , Spectral purification of microwave signals with disciplined dissipative Kerr solitons . Phys. Rev. Lett. 122 ,( 2019 ). http://doi.org/10.1103/PhysRevLett.122.013902 http://doi.org/10.1103/PhysRevLett.122.013902
R. Liu et al. , Low-phase-noise microwave generation with a free-running dual-pumped Si 3 N 4 soliton microcomb . Opt. Lett. 49 , 754 - 757 ( 2024 ). http://doi.org/10.1364/OL.511039 http://doi.org/10.1364/OL.511039
E. Lucas et al. , Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator . Nat. Commun. 11 , 374 ( 2020 ). http://doi.org/10.1038/s41467-019-14059-4 http://doi.org/10.1038/s41467-019-14059-4
X. Yi et al. , Single-mode dispersive waves and soliton microcomb dynamics . Nat. Commun. 8 , 14869 ( 2017 ). http://doi.org/10.1038/ncomms14869 http://doi.org/10.1038/ncomms14869
Q.-F. Yang et al. , Dispersive-wave induced noise limits in miniature soliton microwave sources . Nat. Commun. 12 , 1442 ( 2021 ). http://doi.org/10.1038/s41467-021-21658-7 http://doi.org/10.1038/s41467-021-21658-7
T.M. Fortier et al. , Generation of ultrastable microwaves via optical frequency division . Nat. Photonics 5 , 425 - 429 ( 2011 ). http://doi.org/10.1038/nphoton.2011.121 http://doi.org/10.1038/nphoton.2011.121
X. Xie et al. , Photonic microwave signals with zeptosecond-level absolute timing noise . Nat. Photonics 11 , 44 - 47 ( 2017 ). http://doi.org/10.1038/nphoton.2016.215 http://doi.org/10.1038/nphoton.2016.215
J. Li , X. Yi , H. Lee , S.A. Diddams , K.J. Vahala , Electro-optical frequency division and stable microwave synthesis . Science 345 , 309 - 313 ( 2014 ). http://doi.org/10.1126/science.1252909 http://doi.org/10.1126/science.1252909
I. Kudelin et al. , Photonic chip-based low-noise microwave oscillator . Nature 627 , 534 - 539 ( 2024 ). http://doi.org/10.1038/s41586-024-07058-z http://doi.org/10.1038/s41586-024-07058-z
S. Sun et al. , Integrated optical frequency division for microwave and mmWave generation . Nature 627 , 540 - 545 ( 2024 ). http://doi.org/10.1038/s41586-024-07057-0 http://doi.org/10.1038/s41586-024-07057-0
Y. Zhao et al. , All-optical frequency division on-chip using a single laser . Nature 627 , 546 - 552 ( 2024 ). http://doi.org/10.1038/s41586-024-07136-2 http://doi.org/10.1038/s41586-024-07136-2
Y. He et al. , Chip-scale high-performance photonic microwave oscillator . Sci. Adv. 10 , eado9570 ( 2024 ). http://doi.org/10.1126/sciadv.ado9570 http://doi.org/10.1126/sciadv.ado9570
X. Jin et al. , Microresonator-referenced soliton microcombs with zeptosecond-level timing noise . Nat. Photonics 19 , 630 - 636 ( 2025 ). http://doi.org/10.1038/s41566-025-01669-2 http://doi.org/10.1038/s41566-025-01669-2
L. Maleki , The optoelectronic oscillator . Nat. Photonics 5 , 728 - 730 ( 2011 ). http://doi.org/10.1038/nphoton.2011.293 http://doi.org/10.1038/nphoton.2011.293
J. Tang et al. , Integrated optoelectronic oscillator . Opt. Express 26 , 12257 - 12265 ( 2018 ). http://doi.org/10.1364/OE.26.012257 http://doi.org/10.1364/OE.26.012257
H. Peng , P. Lei , X. Xie , Z. Chen , Dynamics and timing-jitter of regenerative rf feedback assisted resonant electro-optic frequency comb . Opt. Express 29 , 42435 - 42456 ( 2021 ). http://doi.org/10.1364/OE.440621 http://doi.org/10.1364/OE.440621
Y.K. Chembo , D. Brunner , M. Jacquot , L. Larger , Optoelectronic oscillators with time-delayed feedback . Rev. Mod. Phys. 91 ,( 2019 ). http://doi.org/10.1103/RevModPhys.91.035006 http://doi.org/10.1103/RevModPhys.91.035006
T. Hao et al. , Recent advances in optoelectronic oscillators . Adv. Photon. 2 ,( 2020 ). http://doi.org/10.1117/1.AP.2.4.044001 http://doi.org/10.1117/1.AP.2.4.044001
D. Eliyahu, D. Seidel & L. Maleki, Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. 2008 IEEE International Frequency Control Symposium. 811–814 (2008). https://doi.org/10.1109/FREQ.2008.4623111 10.1109/FREQ.2008.4623111 .
T. Hao , W. Li , N. Zhu , M. Li , Perspectives on optoelectronic oscillators . APL Photonics 8 ,( 2023 ). http://doi.org/10.1063/5.0134289 http://doi.org/10.1063/5.0134289
D.C. Cole et al. , Kerr-microresonator solitons from a chirped background . Optica 5 , 1304 - 1310 ( 2018 ). http://doi.org/10.1364/OPTICA.5.001304 http://doi.org/10.1364/OPTICA.5.001304
R. Miao et al. , Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation . Photon. Res. 10 , 1859 - 1867 ( 2022 ). http://doi.org/10.1364/PRJ.458472 http://doi.org/10.1364/PRJ.458472
V.E. Lobanov , N.M. Kondratiev , A.E. Shitikov , R.R. Galiev , I.A. Bilenko , Generation and dynamics of solitonic pulses due to pump amplitude modulation at normal group-velocity dispersion . Phys. Rev. A 100 ,( 2019 ). http://doi.org/10.1103/PhysRevA.100.013807 http://doi.org/10.1103/PhysRevA.100.013807
H. Liu et al. , Stimulated generation of deterministic platicon frequency microcombs . Photon. Res. 10 , 1877 - 1885 ( 2022 ). http://doi.org/10.1364/PRJ.459403 http://doi.org/10.1364/PRJ.459403
S. Li , W. Luo , Z. Li , J. Liu , High-speed Mach-Zehnder modulators based on nonlinear optics and complex band structures . Phys. Rev. Applied 24 , 014021 ( 2022 ). http://doi.org/10.1103/f5v4-n5dw http://doi.org/10.1103/f5v4-n5dw
Z. Ye et al. , Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow- loss silicon nitride photonic integrated circuits . Photon. Res. 11 , 558 - 568 ( 2023 ). http://doi.org/10.1364/PRJ.486379 http://doi.org/10.1364/PRJ.486379
Wei Sun et al. , A chip-integrated comb-based microwave oscillator . Light Sci. Appl. 14 , 179 ( 2025 ). http://doi.org/10.1038/s41377-025-01795-0 http://doi.org/10.1038/s41377-025-01795-0
Y.-H. Luo et al. , A wideband, high-resolution vector spectrum analyzer for integrated photonics . Light Sci. Appl. 13 , 83 ( 2024 ). http://doi.org/10.1038/s41377-024-01435-z http://doi.org/10.1038/s41377-024-01435-z
L. Li, L. Wang, B. Chen, High-speed waveguide modified uni-traveling carrier photodiodes with 130 GHz bandwidth. In 2023 Opto-Electronics and Communications Conference (OECC). 1–3 (2023). https://doi.org/10.1109/OECC56963.2023.10209607 10.1109/OECC56963.2023.10209607
X. Yao , L. Maleki , Multiloop optoelectronic oscillator . IEEE J. Quantum Electron 36 , 79 - 84 ( 2000 ). http://doi.org/10.1109/3.817641 http://doi.org/10.1109/3.817641
C. Xiang , J.E. Bowers , Building 3D integrated circuits with electronics and photonics . Nat. Electron. 7 , 422 - 424 ( 2024 ). http://doi.org/10.1038/s41928-024-01187-z http://doi.org/10.1038/s41928-024-01187-z
J. Liu et al. , High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits . Nat. Commun. 12 , 2236 ( 2021 ). http://doi.org/10.1038/s41467-021-21973-z http://doi.org/10.1038/s41467-021-21973-z
L. Chang et al. , Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon . Opt. Lett. 42 , 803 - 806 ( 2017 ). http://doi.org/10.1364/OL.42.000803 http://doi.org/10.1364/OL.42.000803
G. Roelkens et al. , Present and future of micro-transfer printing for heterogeneous photonic integrated circuits . APL Photonics 9 ,( 2024 ). http://doi.org/10.1063/5.0181099 http://doi.org/10.1063/5.0181099
Q. Yu et al. , Heterogeneous photodiodes on silicon nitride waveguides . Opt. Express 28 , 14824 - 14830 ( 2020 ). http://doi.org/10.1364/OE.387939 http://doi.org/10.1364/OE.387939
M. Churaev et al. , A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform . Nat. Commun. 14 , 3499 ( 2023 ). http://doi.org/10.1038/s41467-023-39047-7 http://doi.org/10.1038/s41467-023-39047-7
B.-C. Yao et al. , Interdisciplinary advances in microcombs: bridging physics and information technology . eLight 4 , 19 ( 2024 ). http://doi.org/10.1186/s43593-024-00071-9 http://doi.org/10.1186/s43593-024-00071-9
Y. Liu et al. , A photonic integrated circuit–based erbium-doped amplifier . Science 376 , 1309 - 1313 ( 2022 ). http://doi.org/10.1126/science.abo2631 http://doi.org/10.1126/science.abo2631
C.O. de Beeck et al. , Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing . Optica 7 , 386 - 393 ( 2020 ). http://doi.org/10.1364/OPTICA.382989 http://doi.org/10.1364/OPTICA.382989
D. Zhu et al. , Integrated photonics on thin-film lithium niobate . Adv. Opt. Photon. 13 , 242 - 352 ( 2021 ). http://doi.org/10.1364/AOP.411024 http://doi.org/10.1364/AOP.411024
M. Zhang , C. Wang , R. Cheng , A. Shams-Ansari , M. Lončar , Monolithic ultra-high- Q lithiu m niobate microring resonator . Optica 4 , 1536 - 1537 ( 2017 ). http://doi.org/10.1364/OPTICA.4.001536 http://doi.org/10.1364/OPTICA.4.001536
Y. He et al. , High-speed tunable microwave-rate soliton microcomb . Nat. Commun. 14 , 3467 ( 2023 ). http://doi.org/10.1038/s41467-023-39229-3 http://doi.org/10.1038/s41467-023-39229-3
X. Lv et al. , Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO 3 microresonators . Nat. Commun. 16 , 2389 ( 2025 ). http://doi.org/10.1038/s41467-025-57736-3 http://doi.org/10.1038/s41467-025-57736-3
C. Wang et al. , Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages . Nature 562 , 101 - 104 ( 2018 ). http://doi.org/10.1038/s41586-018-0551-y http://doi.org/10.1038/s41586-018-0551-y
R. Ma et al. , Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator . Photon. Res. 12 , 1283 - 1293 ( 2024 ). http://doi.org/10.1364/PRJ.521301 http://doi.org/10.1364/PRJ.521301
M. Li et al., Heterogeneously-integrated self-injection locked lasers on thin film lithium niobate. In Optical Fiber Communications Conference(OFC). 1–3 (2024). https://doi.org/10.1364/OFC.2024.W1K.3 10.1364/OFC.2024.W1K.3
Z. Chen et al. , Efficient erbium-doped thin-film lithium niobate waveguide amplifiers . Opt. Lett. 46 , 1161 - 1164 ( 2021 ). http://doi.org/10.1364/OL.420250 http://doi.org/10.1364/OL.420250
C.O. de Beeck et al. , III/V-on-lithium niobate amplifiers and lasers . Optica 8 , 1288 - 1289 ( 2021 ). http://doi.org/10.1364/OPTICA.438620 http://doi.org/10.1364/OPTICA.438620
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构