收稿:2025-07-31,
修回:2025-08-02,
录用:2025-08-06,
网络出版:2025-09-08,
纸质出版:2025-12
Scan QR Code
Teng Tan, Xin-Yue He, Bing Chang, 等. Biomimetic acoustic perception via chip-scale dual-soliton microcombs[J]. eLight, 2025,5.
Teng Tan, Xin-Yue He, Bing Chang, et al. Biomimetic acoustic perception via chip-scale dual-soliton microcombs[J]. eLight, 2025, 5.
Teng Tan, Xin-Yue He, Bing Chang, 等. Biomimetic acoustic perception via chip-scale dual-soliton microcombs[J]. eLight, 2025,5. DOI: 10.1186/s43593-025-00099-5.
Teng Tan, Xin-Yue He, Bing Chang, et al. Biomimetic acoustic perception via chip-scale dual-soliton microcombs[J]. eLight, 2025, 5. DOI: 10.1186/s43593-025-00099-5.
Acoustic perception is a fairly basic but extraordinary feature in nature
relying on multidimensional signal processing for detection
localization
and recognition. Replicating this capability in compact arti
ficial systems
however
remains a formidable challenge due to limitations in scalability
sensitivity
and integration. Here
imitating the auditory system of insects
we introduce an opto-acoustic perception paradigm using fully-stabilized dual-soliton microcombs. By integrating digitally stabilized on-chip dual-microcombs
silicon optoelectronics and bionic fiber-microphone arrays on a single platform
we achieve parallelized interrogation of over 100 sensors. Leveraging the low-noise
multi-channel coherence of fully-stabilized soliton microcombs
this synergy enables ultra-sensitive detection of 29.3 nPa/Hz
1/2
sub centimeter precise localization
real-time tracking and identification for versatile acoustic targets. Bridging silicon photonics
optical fiber sensing and intelligent signal processing in a chiplet microsystem
our scheme delivers out-of-lab deployable capability on autonomous robotics. This work not only deepens the understanding of frequency comb science
but also establishes a concept of dual-comb-driven sensor networks as a scalable foundation for next-generation opto-acoustic intelligence.
A.C. Mason , M.L. Oshinsky , R.R. Hoy , Hyperacute directional hearing in a microscale auditory system . Nature 410 , 686 - 690 ( 2001 ). http://doi.org/10.1038/35070564 http://doi.org/10.1038/35070564
Y. Liu et al. , Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces . Sci. Adv. ( 2016 ). http://doi.org/10.1126/sciadv.1601185 http://doi.org/10.1126/sciadv.1601185
K. Lee et al. , Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch . Nat. Biomed. Eng. 4 , 148 - 158 ( 2019 ). http://doi.org/10.1038/s41551-019-0480-6 http://doi.org/10.1038/s41551-019-0480-6
Y. Gao et al. , Hydrogel microphones for stealthy underwater listening . Nat. Commun. 7 , 12316 ( 2016 ). http://doi.org/10.1038/ncomms12316 http://doi.org/10.1038/ncomms12316
A.G. Krause , M. Winger , T.D. Blasius , Q. Lin , O. Painter , A high-resolution microchip optomechanical accelerometer . Nat. Photonics 6 , 768 - 772 ( 2012 ). http://doi.org/10.1038/nphoton.2012.245 http://doi.org/10.1038/nphoton.2012.245
S. Basiri-Esfahani , A. Armin , S. Forstner , W.P. Bowen , Precision ultrasound sensing on a chip . Nat. Commun. 10 , 132 ( 2019 ). http://doi.org/10.1038/s41467-018-08038-4 http://doi.org/10.1038/s41467-018-08038-4
S.-J. Tang et al. , Single-particle photoacoustic vibrational spectroscopy using optical microresonators . Nat. Photonics 17 , 951 - 956 ( 2023 ). http://doi.org/10.1038/s41566-023-01264-3 http://doi.org/10.1038/s41566-023-01264-3
H. Wu et al. , Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring . Nat. Commun. 8 , 15331 ( 2017 ). http://doi.org/10.1038/ncomms15331 http://doi.org/10.1038/ncomms15331
N.J. Lindsey , T.C. Dawe , J.B. Ajo-Franklin , Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing . Science 366 , 1103 - 1107 ( 2019 ). http://doi.org/10.1126/science.aay5881 http://doi.org/10.1126/science.aay5881
B. Fischer , Optical microphone hears ultrasound . Nat. Photonics 10 , 356 - 358 ( 2016 ). http://doi.org/10.1038/nphoton.2016.95 http://doi.org/10.1038/nphoton.2016.95
A.N. Popper , R.R. Fay , Springer handbook of auditory research : sound source localization ( Springer Handpoo , New York , 2005 ). http://doi.org/10.1007/0-387-28863-5 http://doi.org/10.1007/0-387-28863-5
F. Montealegre-z , T. Jonsson , K.A. Robson-brown , M. Postles , D. Robert , Convergent evolution between insect and mammalian audition . Science 80 ( 968 ), 1 - 5 ( 2013 ).
W. Yan et al. , Single fibre enables acoustic fabrics via nanometre-scale vibrations . Nature 603 , 616 - 623 ( 2022 ). http://doi.org/10.1038/s41586-022-04476-9 http://doi.org/10.1038/s41586-022-04476-9
K. Ma et al. , A wave-confining metasphere beamforming acoustic sensor for superior human-machine voice interaction . Sci. Adv. 8 , 1 - 11 ( 2022 ). http://doi.org/10.1126/sciadv.adc9230 http://doi.org/10.1126/sciadv.adc9230
X. Sun et al. , Sound localization and separation in 3D space using a single microphone with a metamaterial enclosure . Adv. Sci. ( 2020 ). http://doi.org/10.1002/advs.201902271 http://doi.org/10.1002/advs.201902271
J. Pan et al. , Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography . Nat. Commun. 14 , 3250 ( 2023 ). http://doi.org/10.1038/s41467-023-39075-3 http://doi.org/10.1038/s41467-023-39075-3
Y. Rao , Z. Wang , H. Wu , Z. Ran , B. Han , Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR) . Photonic Sensors 11 , 1 - 30 ( 2021 ). http://doi.org/10.1007/s13320-021-0619-4 http://doi.org/10.1007/s13320-021-0619-4
J.-T. Li et al. , Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs . Sci. Adv. ( 2024 ). http://doi.org/10.1126/sciadv.adf8666 http://doi.org/10.1126/sciadv.adf8666
B. Chang et al. , Dispersive Fourier transform based dual-comb ranging . Nat. Commun. 15 , 1 - 10 ( 2024 ). http://doi.org/10.1038/s41467-024-49438-z http://doi.org/10.1038/s41467-024-49438-z
X. Lu , Y. Wu , Y. Gong , Y. Rao , A miniature fiber-optic microphone based on an annular corrugated MEMS diaphragm . J. Light. Technol. 36 , 5224 - 5229 ( 2018 ). http://doi.org/10.1109/JLT.2018.2868964 http://doi.org/10.1109/JLT.2018.2868964
M. Yao et al. , Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator . Opt. Lett. 45 , 3516 ( 2020 ). http://doi.org/10.1364/OL.393900 http://doi.org/10.1364/OL.393900
G. Wu et al. , Development of highly sensitive fiber-optic acoustic sensor and its preliminary application for sound source localization . J. Appl. Phys. ( 2021 ). http://doi.org/10.1063/5.0044997 http://doi.org/10.1063/5.0044997
S. Lorenzo , O. Solgaard , Acoustic localization with an optical fiber silicon microphone system . IEEE Sens. J. 22 , 9408 - 9416 ( 2022 ). http://doi.org/10.1109/JSEN.2022.3164597 http://doi.org/10.1109/JSEN.2022.3164597
T.J. Kippenberg , A.L. Gaeta , M. Lipson , M.L. Gorodetsky , Dissipative Kerr solitons in optical microresonators . Science ( 2018 ). http://doi.org/10.1126/science.aan8083 http://doi.org/10.1126/science.aan8083
L. Chang , S. Liu , J.E. Bowers , Integrated optical frequency comb technologies . Nat. Photonics 16 , 95 - 108 ( 2022 ). http://doi.org/10.1038/s41566-021-00945-1 http://doi.org/10.1038/s41566-021-00945-1
Y. Sun et al. , Applications of optical microcombs . Adv. Opt. Photonics 15 , 86 ( 2023 ). http://doi.org/10.1364/AOP.470264 http://doi.org/10.1364/AOP.470264
P. Marin-Palomo et al. , Microresonator-based solitons for massively parallel coherent optical communications . Nature 546 , 274 - 279 ( 2017 ). http://doi.org/10.1038/nature22387 http://doi.org/10.1038/nature22387
Y. Geng et al. , Coherent optical communications using coherence-cloned Kerr soliton microcombs . Nat. Commun. 13 , 1070 ( 2022 ). http://doi.org/10.1038/s41467-022-28712-y http://doi.org/10.1038/s41467-022-28712-y
J. Feldmann et al. , Parallel convolutional processing using an integrated photonic tensor core . Nature 589 , 52 - 58 ( 2021 ). http://doi.org/10.1038/s41586-020-03070-1 http://doi.org/10.1038/s41586-020-03070-1
Y. Li et al. , Nonlinear co-generation of graphene plasmons for optoelectronic logic operations . Nat. Commun. 13 , 1 - 7 ( 2022 ).
M.G. Suh , K.J. Vahala , Soliton microcomb range measurement . Science 359 , 884 - 887 ( 2018 ). http://doi.org/10.1126/science.aao1968 http://doi.org/10.1126/science.aao1968
J. Riemensberger et al. , Massively parallel coherent laser ranging using a soliton microcomb . Nature 581 , 164 - 170 ( 2020 ). http://doi.org/10.1038/s41586-020-2239-3 http://doi.org/10.1038/s41586-020-2239-3
B. Yao et al. , Gate-tunable frequency combs in graphene–nitride microresonators . Nature 558 , 410 - 414 ( 2018 ). http://doi.org/10.1038/s41586-018-0216-x http://doi.org/10.1038/s41586-018-0216-x
H. Zhang et al. , Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers . Phys. Rev. Lett. 130 ,( 2023 ). http://doi.org/10.1103/PhysRevLett.130.153802 http://doi.org/10.1103/PhysRevLett.130.153802
C. Qin et al. , Electrically controllable laser frequency combs in graphene-fibre microresonators . Light Sci. Appl. 9 , 185 ( 2020 ). http://doi.org/10.1038/s41377-020-00419-z http://doi.org/10.1038/s41377-020-00419-z
C. Qin et al. , Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability . Laser Photon. Rev. 17 ,( 2023 ). http://doi.org/10.1002/lpor.202200662 http://doi.org/10.1002/lpor.202200662
T. Tan et al. , Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator . Nat. Commun. 12 , 8 - 15 ( 2021 ). http://doi.org/10.1038/s41467-021-26740-8 http://doi.org/10.1038/s41467-021-26740-8
D.T. Spencer et al. , An optical-frequency synthesizer using integrated photonics . Nature 557 , 81 - 85 ( 2018 ). http://doi.org/10.1038/s41586-018-0065-7 http://doi.org/10.1038/s41586-018-0065-7
I. Coddington , N. Newbury , W. Swann , Dual-comb spectroscopy . Optica 3 ,( 2016 ). http://doi.org/10.1364/OPTICA.3.000414 http://doi.org/10.1364/OPTICA.3.000414
M.-G. Suh , Q.-F. Yang , K.Y. Yang , X. Yi , K.J. Vahala , Microresonator soliton dual-comb spectroscopy . Science 354 , 600 - 603 ( 2016 ). http://doi.org/10.1126/science.aah6516 http://doi.org/10.1126/science.aah6516
B.C. Yao et al. , Interdisciplinary advances in microcombs : bridging physics and information technology . eLight ( 2024 ). http://doi.org/10.1186/s43593-024-00071-9 http://doi.org/10.1186/s43593-024-00071-9
Y. Geng et al. , Phase noise of Kerr soliton dual microcombs . Opt. Lett. 47 , 4838 ( 2022 ). http://doi.org/10.1364/OL.469950 http://doi.org/10.1364/OL.469950
J.A. Bucaro , N. Lagakos , B.H. Houston , J. Jarzynski , M. Zalalutdinov , Miniature, high performance, low-cost fiber optic microphone . J. Acoust. Soc. Am. 118 , 1406 - 1413 ( 2005 ). http://doi.org/10.1121/1.2000749 http://doi.org/10.1121/1.2000749
C. Wang et al. , High energy and low noise soliton fiber laser comb based on nonlinear merging of Kelly sidebands . Opt. Express 30 , 23556 ( 2022 ). http://doi.org/10.1364/OE.460609 http://doi.org/10.1364/OE.460609
A. Francl , J.H. McDermott , Deep neural network models of sound localization reveal how perception is adapted to real-world environments . Nat. Hum. Behav. 6 , 111 - 133 ( 2022 ). http://doi.org/10.1038/s41562-021-01244-z http://doi.org/10.1038/s41562-021-01244-z
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621